Skip to main content
Log in

Robust Fault Detection for Uncertain T–S Fuzzy System with Unmeasurable Premise Variables: Descriptor Approach

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper considers the design of robust observer for nonlinear uncertain systems affected by sensor fault and subject to external disturbance, represented under the multiple fuzzy model formulation of Takagi–Sugeno with unmeasurable premise variables. Using the technique of descriptor system which considers sensor faults as an auxiliary state variable, we proposed a new less conservative approach in terms of a linear matrix inequality based on Lyapunov theory and \(H_{\infty }\) performance to established sufficient conditions for the existence of the considered observer. The observer estimates the previous mentioned variables and attenuates the effect of the modeling uncertainties and the perturbations on the estimation error. The benefits of the proposed approach regarding the classical one are shown through an academic example. An application to a reduced bioreactor model is considered, and the performances of the proposed approach are illustrated through numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Patton, R.J., Chen, J.: Observer-based fault detection and isolation: robustness and applications. Control Eng. Pract. 5(5), 671–682 (1997)

    Article  Google Scholar 

  2. Nobrega, E.G., Abdalla, M.O., Grigoriadis, K.M.: Robust fault estimation of uncertain systems using an LMI-based approach. Int. J. Robust Nonlinear Control 18(18), 1657–1680 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lee, D.J., Park, Y., Park, Y.S.: Robust \(H_{\infty }\) sliding mode descriptor observer for fault and output disturbance estimation of uncertain systems. IEEE Trans. Autom. Control 57(11), 2928–2934 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, Y.Y., Lin, Z.: A descriptor system approach to robust stability analysis and controller synthesis. IEEE Trans. Autom. Control 49(11), 2081–2084 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Haj Brahim, I., Bouattour, M., Mehdi, D., Chaabane, M., Hashim, G.: Sensor faults observer design with \(H_{\infty }\) performance for non-linear T–S systems. Int. J. Autom. Comput. 10(6), 563–570 (2013)

    Article  Google Scholar 

  6. Marx, B., Koenig, D., Georges, D.: Robust fault-tolerant control for descriptor systems. IEEE Trans. Autom. Control 49(10), 1869–1876 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, W.J., Chen, P.H., Yang, C.T.: Robust fuzzy congestion control of TCP/AQM router via perturbed Takagi–Sugeno fuzzy models. Int. J. Fuzzy Syst. 15(2), 203–213 (2013)

    Google Scholar 

  8. Tanaka, K., Ikeda, T., Wang, H.O.: Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, h/sup/spl infin//control theory, and linear matrix inequalities. IEEE Trans. Fuzzy Syst. 4(1), 1–13 (1996)

    Article  Google Scholar 

  9. Chang, W.J., Huang, B.J.: Robust fuzzy control subject to state variance and passivity constraints for perturbed nonlinear systems with multiplicative noises. ISA Trans. 53(6), 1787–1795 (2014)

    Article  Google Scholar 

  10. Chamseddine, A., Join, C., Theilliol, D.: Trajectory planning/re-planning for satellite systems in rendezvous mission in the presence of actuator faults based on attainable efforts analysis. Int. J. Syst. Sci. 46(4), 690–701 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Klug, M., Castelan, E.B., Leite, V.J., Silva, L.: Fuzzy dynamic output feedback control through nonlinear Takagi–Sugeno models. Fuzzy Sets Syst. 263, 92–111 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shaker, M.S., Patton, R.J.: Active sensor fault tolerant output feedback tracking control for wind turbine systems via T–S model. Eng. Appl. Artif. Intell. 34, 1–12 (2014)

    Article  Google Scholar 

  13. Li, X., Zhao, X.P., Chen, J.: Controller design for electric power steering system using T–S fuzzy model approach. Int. J. Autom. Comput. 6(2), 198–203 (2009)

    Article  Google Scholar 

  14. Laid Hadjili, M., Kara, K.: Modelling and control using Takagi–Sugeno fuzzy models. In: Electronics, Communications and Photonics Conference (SIECPC), 2011 Saudi International, pp. 1–6. IEEE (2011)

  15. Kowal, M., Korbicz, J.: Fault detection under fuzzy model uncertainty. Int. J. Autom. Comput. 4(2), 117–124 (2007)

    Article  Google Scholar 

  16. Akhenak, A., Chadli, M., Ragot, J., Maquin, D.: Fault detection and isolation using sliding mode observer for uncertain Takagi–Sugeno fuzzy model. In: 2008 16th Mediterranean Conference on Control and automation, pp. 286–291. IEEE (2008)

  17. Schulte, H., Zajac, M., Georg, S.: Takagi–Sugeno sliding mode observer design for load estimation and sensor fault detection in wind turbines. In: 2012 IEEE International Conference on Fuzzy Systems, pp. 1–8. IEEE (2012)

  18. Zhang, K., Jiang, B., Shi, P.: Fault estimation observer design for discrete-time Takagi–Sugeno fuzzy systems based on piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 20(1), 192–200 (2012)

    Article  Google Scholar 

  19. Chang, X.H., Yang, G.H.: A descriptor representation approach to observer-based \(H_{\infty }\) control synthesis for discrete-time fuzzy systems. Fuzzy Sets Syst. 185(1), 38–51 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nagy-Kiss, A.M., Schutz, G., Ragot, J.: State, unknown input and uncertainty estimation for nonlinear systems using a Takagi–Sugeno model. In: Control Conference (ECC), 2014 European, pp. 1274–1280. IEEE (2014)

  21. Ahmadizadeh, S., Zarei, J., Karimi, H.R.: A robust fault detection design for uncertain Takagi–Sugeno models with unknown inputs and time-varying delays. Nonlinear Anal. Hybrid Syst. 11, 98–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nguang, S.K., Shi, P., Ding, S.: Fault detection for uncertain fuzzy systems: an LMI approach. IEEE Trans. Fuzzy Syst. 15(6), 1251–1262 (2007)

    Article  Google Scholar 

  23. Nagy-Kiss, A.M., Schutz, G., Ragot, J.: Parameter estimation for uncertain systems based on fault diagnosis using Takagi–Sugeno model. ISA Trans. 56, 65–74 (2015)

    Article  Google Scholar 

  24. Aouaouda, S., Chadli, M., Cocquempot, V., Tarek, K.M.: Multi-objective \(H_{-}/H_\infty\) fault detection observer design for Takagi–Sugeno fuzzy systems with unmeasurable premise variables: descriptor approach. Int. J. Adapt. Control Signal Process. 27(12), 1031–1047 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ichalal, D., Marx, B., Ragot, J., Maquin, D.: Robust observer design for uncertain Takagi–Sugeno model with unmeasurable decision variables: an \(L_2\) approach. In: 2008 16th Mediterranean Conference on Control and Automation, pp. 274–279. IEEE (2008)

  26. Ichalal, D., Marx, B., Ragot, J., Maquin, D.: Fault tolerant control for Takagi–Sugeno systems with unmeasurable premise variables by trajectory tracking. In: 2010 IEEE International Symposium on Industrial Electronics (ISIE), pp. 2097–2102. IEEE (2010)

  27. Moodi, H., Farrokhi, M.: On observer-based controller design for Sugeno systems with unmeasurable premise variables. ISA Trans. 53(2), 305–316 (2014)

    Article  Google Scholar 

  28. Haj Brahim, I., Bouattour, M., Mehdi, D., Chaabane, M.: Robust fault tolerant control for T–S fuzzy system with unmeasurable premise variables: LMI approach. In: 2015 12th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 1–6. IEEE (2015)

  29. Ghorbel, H., El Hajjaji, A., Souissi, M., Chaabane, M.: Robust tracking control for Takagi–Sugeno fuzzy systems with unmeasurable premise variables: application to tank system. J. Dyn. Syst. Meas. Contr. 136(4), 041011 (2014)

    Article  Google Scholar 

  30. Bouattour, M., Chadli, M., Chaabane, M., El Hajjaji, A.: Design of robust fault detection observer for Takagi–Sugeno models using the descriptor approach. Int. J. Control Autom. Syst. 9(5), 973–979 (2011)

    Article  Google Scholar 

  31. Ghorbel, H., El Hajjaji, A., Souissi, M., Chaabane, M.: Fault-tolerant trajectory tracking control for Takagi–Sugeno systems with unmeasurable premise variables: descriptor approach. Circuits Syst. Signal Process. 33(6), 1763–1781 (2014)

    Article  MathSciNet  Google Scholar 

  32. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, Hoboken (2004)

    Google Scholar 

  33. Manamanni, N., Mansouri, B., Hamzaoui, A., Zaytoon, J.: Relaxed conditions in tracking control design for a T–S fuzzy model. J. Intell. Fuzzy Syst. 18(2), 185–210 (2007)

    MATH  Google Scholar 

  34. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  35. Ichalal, D., Marx, B., Maquin, D., Ragot, J.: Estimation d’état des systèmes non linéaires incertains sous forme multimodèle de type Takagi–Sugeno. In: 1er Colloque International Francophone, Ingénierie et Environnement, CIFIE’2010, pp. CDROM (2010)

  36. Nagy-Kiss, A.M., Mourot, G., Marx, B., Ragot, J., Schutz, G.: Systematic multimodeling methodology applied to an activated sludge reactor model. Ind. Eng. Chem. Res. 49(6), 2790–2799 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Haj Brahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haj Brahim, I., Mehdi, D. & Chaabane, M. Robust Fault Detection for Uncertain T–S Fuzzy System with Unmeasurable Premise Variables: Descriptor Approach. Int. J. Fuzzy Syst. 20, 416–425 (2018). https://doi.org/10.1007/s40815-017-0344-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0344-8

Keywords

Navigation