Skip to main content
Log in

Hesitant Fuzzy 2-Dimension Linguistic Term Set and its Application to Multiple Attribute Group Decision Making

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Hesitant fuzzy linguistic term set (HFLTS) is a powerful tool for solving the situations in which a decision maker hesitates among several consecutive linguistic terms in providing his or her preference to an alternative. To reflect the different importance degrees or weights of all possible linguistic terms in a HFLTS, an extension of HFLTS called probabilistic linguistic term set (PLTS) is proposed through adding probabilities. Note that for a PLTS, the importance information of all possible linguistic terms is described by crisp numbers. However, in practical applications, especially under uncertain environment, it may be difficult for decision makers to provide the importance information by crisp numbers. To accurately preserve the complete evaluation information provided by decision makers, motivated by the idea of 2-dimension linguistic variables, this paper proposes the concept of hesitant fuzzy 2-dimension linguistic term set, which includes not only possible linguistic terms expressing the evaluation value to an object, but also the importance degree of each linguistic term denoted by a linguistic term. Firstly, the operations and comparison laws between hesitant fuzzy 2-dimension linguistic elements (HF2DLEs) are defined. Then, some generalized aggregation operators are proposed for aggregating HF2DLEs, such as generalized hesitant fuzzy 2-dimension linguistic weighted average (G-HF2DLWA) operator, generalized hesitant fuzzy 2-dimension linguistic ordered weighted average (G-HF2DLOWA) operator and generalized hesitant fuzzy 2-dimension linguistic hybrid weighted average (G-HF2DLHWA) operator. Furthermore, some desirable properties and special cases of these operators are discussed. Based on the G-HF2DLOWA and G-HF2DLWA operators, an approach to multiple attribute group decision making is developed under hesitant fuzzy 2-dimension linguistic environment. Finally, a numerical example is given to verify the practicality and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–356 (1965)

    Article  Google Scholar 

  2. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)

    MATH  Google Scholar 

  3. Zadeh, L.A.: The concept of a linguistic variable and its applications to approximate reasoning-Part I. Inf. Sci. 8(3), 199–249 (1975)

    Article  Google Scholar 

  4. Rodríguez, R.M., Martínez, L., Herrera, F.: Hesitant fuzzy linguistic terms sets for decision making. IEEE Trans. Fuzzy Syst. 20(1), 109–119 (2012)

    Article  Google Scholar 

  5. Gou, X.J., Xu, Z.S.: Novel basic operational laws for linguistic terms, hesitant fuzzy linguistic term sets and probabilistic linguistic term sets. Inf. Sci. 372, 407–427 (2016)

    Article  Google Scholar 

  6. Lee, L.W., Chen, S.M.: Fuzzy decision making based on likelihood-based comparison relations of hesitant fuzzy linguistic term sets and hesitant fuzzy linguistic operators. Inf. Sci. 294, 513–529 (2015)

    Article  MathSciNet  Google Scholar 

  7. Wang, J.Q., Wang, J., Chen, Q.H., Zhang, H.Y., Chen, X.H.: An outranking approach for multi-criteria decision-making with hesitant fuzzy linguistic term sets. Inf. Sci. 280, 338–351 (2014)

    Article  MathSciNet  Google Scholar 

  8. Wei, C.P., Zhao, N., Tang, X.J.: Operators and comparisons of hesitant fuzzy linguistic term sets. IEEE Trans. Fuzzy Syst. 22(3), 575–586 (2014)

    Article  Google Scholar 

  9. Gou, X.J., Xu, Z.S., Liao, H.C.: Hesitant fuzzy linguistic entropy and cross-entropy measures and alternative queuing method for multiple criteria decision making. Inf. Sci. 388–389, 225–246 (2017)

    Article  Google Scholar 

  10. Liao, H.C., Xu, Z.S.: Approaches to manage hesitant fuzzy linguistic information based on the cosine distance and similarity measures for HFLTSs and their application in qualitative decision making. Expert Syst. Appl. 42, 5328–5336 (2015)

    Article  Google Scholar 

  11. Liao, H.C., Xu, Z.S., Zeng, X.J.: Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making. Inf. Sci. 271, 125–142 (2014)

    Article  MathSciNet  Google Scholar 

  12. Liao, H.C., Xu, Z.S., Zeng, X.J., Merigó, J.M.: Qualitative decision making with correlation coefficients of hesitant fuzzy linguistic term sets. Knowl. Based Syst. 76, 127–138 (2015)

    Article  Google Scholar 

  13. Wang, J.Q., Wu, J.T., Wang, J., Zhang, H.Y., Chen, X.H.: Multi-criteria decision-making methods based on the Hausdorff distance of hesitant fuzzy linguistic numbers. Soft. Comput. 20(4), 1621–1633 (2016)

    Article  Google Scholar 

  14. Gou, X.J., Xu, Z.S., Liao, H.C.: Multi-criteria decision making based on Bonferroni means with hesitant fuzzy linguistic information. Soft. Comput. (2016). doi:10.1007/s00500-016-2211-1

    Article  MATH  Google Scholar 

  15. Xu, Y.J., Xu, A.W., Merigó, J.M., Wang, H.M.: Hesitant fuzzy linguistic ordered weighted distance operators for group decision making. J Appl. Math. Comput. 49(1), 285–308 (2015)

    Article  MathSciNet  Google Scholar 

  16. Yu, S.M., Zhang, H.Y., Wang, J.Q.: Hesitant fuzzy linguistic maslaurin symmetric mean operators and their applications to multi-criteria decision-making problem. Int. J. Intell. Syst. (2017). doi:10.1002/int.21907

    Article  Google Scholar 

  17. Farhadinia, B.: Multiple criteria decision-making methods with completely unknown weights in hesitant fuzzy linguistic term setting. Knowl. Based Syst. 93, 135–141 (2016)

    Article  Google Scholar 

  18. Liao, H.C., Xu, Z.S., Zeng, X.J.: Hesitant fuzzy linguistic VIKOR method and its application in qualitative multiple criteria decision making. IEEE Trans. Fuzzy Syst. 23, 1343–1355 (2015)

    Article  Google Scholar 

  19. Sellak, H., Ouhbi, B., Frikh, B.: A knowledge-based outranking approach for multi-criteria decision-making with hesitant fuzzy linguistic term sets. Appl. Soft Comput. (2017). doi:10.1016/j.asoc.2017.06.031

    Article  Google Scholar 

  20. Sun, R.X., Hu, J.H., Zhou, J.D., Chen, X.H.: A hesitant fuzzy linguistic projection-based MABAC method for patients’ prioritization. Int. J. Fuzzy Syst. (2017). doi:10.1007/s40815-017-0345-7

    Article  Google Scholar 

  21. Wei, C.P., Ren, Z., Rodríguez, R.M.: A hesitant fuzzy linguistic TODIM method based on score function. Int. J. Comput. Intell. Syst. 22, 575–585 (2015)

    Google Scholar 

  22. Liu, H.B., Cai, J.F., Jiang, L.: On improving the additive consistency of the fuzzy preference relations based on comparative linguistic expressions. Int. J. Intell. Syst. 29, 544–559 (2014)

    Article  Google Scholar 

  23. Zhang, Z.M., Wu, C.: On the use of multiplicative consistency in hesitant fuzzy linguistic preference relations. Knowl. Based Syst. 72, 13–27 (2014)

    Article  Google Scholar 

  24. Zhu, B., Xu, Z.S.: Consistency measures for hesitant fuzzy linguistic preference relations. IEEE Trans. Fuzzy Syst. 22, 35–45 (2014)

    Article  Google Scholar 

  25. Zhang, Z.M., Wu, C.: Hesitant fuzzy linguistic aggregation operators and their applications to multiple attribute group decision making. J. Intell. Fuzzy Syst. 26(5), 2185–2202 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Wang, J., Wang, J.Q., Zhang, H.Y., Chen, X.H.: Multi-criteria group decision making approach based on 2-tuple linguistic aggregation operators with multi-hesitant fuzzy linguistic information. Int. J. Fuzzy Syst. 18(1), 81–97 (2016)

    Article  MathSciNet  Google Scholar 

  27. Gou, X.J., Liao, H.C., Xu, Z.S., Herrera, F.: Double hierarchy hesitant fuzzy linguistic term set and MULTIMOORA method: a case of study to evaluate the implementation status of haze controlling measures. Inf. Fusion 38, 22–34 (2017)

    Article  Google Scholar 

  28. Pang, Q., Wang, H., Xu, Z.S.: Probabilistic linguistic term sets in multi-attribute group decision making. Inf. Sci. 369, 128–143 (2016)

    Article  Google Scholar 

  29. Zhang, Y.X., Xu, Z.S., Wang, H., Liao, H.C.: Consistency-based risk assessment with probabilistic linguistic preference relation. Appl. Soft Comput. 49, 817–833 (2016)

    Article  Google Scholar 

  30. Zhu, W.D., Zhou, G.Z., Yang, S.L.: An approach to group decision making based on 2-dimension linguistic assessment. Syst. Eng. 27(2), 113–118 (2009)

    Google Scholar 

  31. Yager, R.R.: Generalized OWA aggregation operators. Fuzzy Optim. Decis. Mak. 3, 93–107 (2004)

    Article  MathSciNet  Google Scholar 

  32. Zhao, H., Xu, Z.S., Ni, M.F., Liu, S.S.: Generalized aggregation operators for intuitionistic fuzzy sets. Int. J. Intell. Syst. 25(1), 1–30 (2010)

    Article  Google Scholar 

  33. Zhou, L.G., Chen, H.Y., Merigó, J.M., Gil-Lafuente, A.M.: Uncertain generalized aggregation operators. Expert Syst. Appl. 39, 1105–1117 (2012)

    Article  Google Scholar 

  34. Li, D.F.: Multiattribute decision making method based on generalized OWA operators with intuitionistic fuzzy sets. Expert Syst. Appl. 37, 8673–8678 (2010)

    Article  Google Scholar 

  35. Wei, G.W.: Some generalized aggregating operators with linguistic information and their application to multiple attribute group decision making. Comput. Ind. Eng. 61, 32–38 (2011)

    Article  Google Scholar 

  36. Xia, M.M., Xu, Z.S.: Hesitant fuzzy information aggregation in decision making. Int. J. Approx. Reason. 52(3), 395–407 (2011)

    Article  MathSciNet  Google Scholar 

  37. Herrera, F., Herrera-Viedma, E.: Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Set. Syst. 115(1), 67–82 (2000)

    Article  MathSciNet  Google Scholar 

  38. Herrera, F., Herrera-Viedma, E., Verdegay, J.L.: A model of consensus in group decision making under linguistic assessment. Fuzzy Set. Syst. 78(1), 73–87 (1996)

    Article  MathSciNet  Google Scholar 

  39. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity of processing information. Psychol. Rev. 63(2), 81–97 (1956)

    Article  Google Scholar 

  40. Xu, Z.S.: Deviation measures of linguistic preference relations in group decision making. Omega 33, 249–254 (2005)

    Article  Google Scholar 

  41. Zhang, J.L., Qi, X.W.: Research on multiple attribute decision making under hesitant fuzzy linguistic environment with application to production strategy decision making. Adv. Mater. Res. 753–755, 2829–2836 (2013)

    Article  Google Scholar 

  42. Liu, P.D., Qi, X.F.: Some generalized dependent aggregation operators with 2-dimension linguistic information and their application to group decision making. J. Intell. Fuzzy Syst. 27, 1761–1773 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Herrera, F., Herrera-Viedma, E., Chiclana, F.: Multiperson decision-making based on multiplicative preference relations. Eur. J. Oper. Res. 129(2), 372–385 (2001)

    Article  MathSciNet  Google Scholar 

  44. Wang, Y., Xu, Z.S.: A new method of giving OWA weights. Math. Prac. Theory 3(3), 51–61 (2008)

    MATH  Google Scholar 

  45. Xu, Z.S., Xia, M.M.: Distance and similarity measures for hesitant fuzzy sets. Inf. Sci. 181, 2128–2138 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work is supported by “the Fundamental Research Funds for the Central Universities” in UIBE (15QD08), National Nature Science Foundation of China (71601066) and the Humanities and Social Science Foundation of Ministry of Education in China (16YJC630093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyue Liu.

Appendix

Appendix

1.1 The Proof of Theorem 1

Proof (1) For n = 1, Eq. (17) is hold obviously.

(2) For n = 2, since

$$\hat{h}_{{S_{1} }}^{\lambda } = \bigcup\nolimits_{{(\dot{s}_{{a_{1} }} ,\ddot{s}_{{b_{1} }} ) \in \hat{h}_{{S_{1} }} }} {\left\{ {\left( {f^{ - 1} (f(\dot{s}_{{a_{1} }} )^{\lambda } ),\ddot{s}_{{b_{1} }} } \right)} \right\}},$$

then

$$w_{1} \hat{h}_{{S_{1} }}^{\lambda } = \bigcup\nolimits_{{(\dot{s}_{{a_{1} }} ,\ddot{s}_{{b_{1} }} ) \in \hat{h}_{{S_{1} }} }} {\left\{ {\left( {f^{ - 1} (1 - (1 - f(\dot{s}_{{a_{1} }} )^{\lambda } )^{{w_{1} }} ),\ddot{s}_{{b_{1} }} } \right)} \right\}}.$$

Similarly,

$$w_{2} \hat{h}_{{S_{2} }}^{\lambda } = \bigcup\nolimits_{{(\dot{s}_{{a_{2} }} ,\ddot{s}_{{b_{2} }} ) \in \hat{h}_{{S_{2} }} }} {\left\{ {\left( {f^{ - 1} (1 - (1 - f(\dot{s}_{{a_{2} }} )^{\lambda } )^{{w_{2} }} ),\ddot{s}_{{b_{2} }} } \right)} \right\}}.$$

Then,

$$\begin{aligned} w_{1} \hat{h}_{{S_{1} }}^{\lambda } + w_{2} \hat{h}_{{S_{2} }}^{\lambda } \\ & = \bigcup\nolimits_{{(\dot{s}_{{a_{1} }} ,\ddot{s}_{{b_{1} }} ) \in \hat{h}_{{S_{1} }} ,(\dot{s}_{{a_{2} }} ,\ddot{s}_{{b_{2} }} ) \in \hat{h}_{{S_{2} }} }} {\left\{ {\left( {f^{ - 1} (1 - (1 - f(\dot{s}_{{a_{1} }} )^{\lambda } )^{{w_{1} }} ) + f^{ - 1} (1 - (1 - f(\dot{s}_{{a_{2} }} )^{\lambda } )^{{w_{2} }} )} \right.} \quad \right.- f^{ - 1} (1 - (1 - f(\dot{s}_{{a_{1} }} )^{\lambda } )^{{w_{1} }} )} \\ & \left. {\qquad \left. {f^{ - 1} (1 - (1 - f(\dot{s}_{{a_{2} }} )^{\lambda } )^{{w_{2} }} ),\;\;\hbox{min} (\ddot{s}_{{b_{1} }} ,\ddot{s}_{{b_{2} }} )} \right)} \right\} \\ {\kern 1pt} & = \bigcup\nolimits_{{(\dot{s}_{{a_{1} }} ,\ddot{s}_{{b_{1} }} ) \in \hat{h}_{{S_{1} }} ,(\dot{s}_{{a_{2} }} ,\ddot{s}_{{b_{2} }} ) \in \hat{h}_{{S_{2} }} }} {\left\{ {\left( {f^{ - 1} (1 - (1 - f(\dot{s}_{{a_{1} }} )^{\lambda } )^{{w_{1} }} (1 - f(\dot{s}_{{a_{2} }} )^{\lambda } )^{{w_{2} }} ),\;\;\hbox{min} (\ddot{s}_{{b_{1} }} ,\ddot{s}_{{b_{2} }} )} \right)} \right\}} \\ & = \bigcup\nolimits_{{(\dot{s}_{{a_{1} }} ,\ddot{s}_{{b_{1} }} ) \in \hat{h}_{{S_{1} }} ,(\dot{s}_{{a_{2} }} ,\ddot{s}_{{b_{2} }} ) \in \hat{h}_{{S_{2} }} }} {\left\{ {\left( {f^{ - 1} \left( {1 - \prod\limits_{i = 1}^{2} {(1 - f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } } \right),\;\;\hbox{min} (\ddot{s}_{{b_{1} }} ,\ddot{s}_{{b_{2} }} )} \right)} \right\}} . \\ \end{aligned}$$

Based on Eq. (13), we obtain

$$\begin{aligned} {\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }} ,\hat{h}_{{S_{2} }} ) & = (w_{1} \hat{h}_{{S_{1} }}^{\lambda } + w_{2} \hat{h}_{{S_{2} }}^{\lambda } )^{1/\lambda } \\ & = \left\{ {\bigcup\nolimits_{{(\dot{s}_{{a_{1} }} ,\ddot{s}_{{b_{1} }} ) \in \hat{h}_{{S_{1} }} ,(\dot{s}_{{a_{2} }} ,\ddot{s}_{{b_{2} }} ) \in \hat{h}_{{S_{2} }} }} {\left\{ {\left( {f^{ - 1} \left( {1 - \prod\limits_{i = 1}^{2} {(1 - f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } } \right),\hbox{min} (\ddot{s}_{{b_{1} }} ,\ddot{s}_{{b_{2} }} )} \right)} \right\}} } \right\}^{1/\lambda } \\ & = \bigcup\nolimits_{{(\dot{s}_{{a_{1} }} ,\ddot{s}_{{b_{1} }} ) \in \hat{h}_{{S_{1} }} ,(\dot{s}_{{a_{2} }} ,\ddot{s}_{{b_{2} }} ) \in \hat{h}_{{S_{2} }} }} {\left\{ {\left( {f^{ - 1} \left( {\left( {1 - \prod\limits_{i = 1}^{2} {(1 - f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } } \right)^{1/\lambda } } \right),\hbox{min} (\ddot{s}_{{b_{1} }} ,\ddot{s}_{{b_{2} }} )} \right)} \right\}} . \\ \end{aligned}$$

Therefore, when n = 2, Eq. (17) is hold.

(3) If Eq. (17) holds for n = k, that is

$${\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }} ,\hat{h}_{{S_{2} }} , \ldots ,\hat{h}_{{S_{k} }} ) = \bigcup\nolimits_{{(\dot{s}_{{a_{i} }} ,\ddot{s}_{{b_{i} }} ) \in \hat{h}_{{S_{i} }} }} {\left\{ {\left( {f^{ - 1} \left( {\left( {1 - \prod\limits_{i = 1}^{k} {(1 - f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } } \right)^{1/\lambda } } \right),\mathop {\hbox{min} }\limits_{1 \le i \le k} (\ddot{s}_{{b_{i} }} )} \right)} \right\}} ,$$

i.e.,

$$\sum\limits_{i = 1}^{k} {w_{i} \hat{h}_{{S_{i} }}^{\lambda } } = \bigcup\nolimits_{{(\dot{s}_{{a_{i} }} ,\ddot{s}_{{b_{i} }} ) \in \hat{h}_{{S_{i} }} }} {\left\{ {\left( {f^{ - 1} \left( {1 - \prod\limits_{i = 1}^{k} {(1 - f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } } \right),\mathop {\hbox{min} }\limits_{1 \le i \le k} (\ddot{s}_{{b_{i} }} )} \right)} \right\}} .$$

Then, when n = k+1, by Eqs. (10), (12) and (13), we have

$$\begin{aligned} {\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }} ,\hat{h}_{{S_{2} }} , \ldots ,\hat{h}_{{S_{k + 1} }} ) = \left[ {\left( {\sum\limits_{i = 1}^{k} {w_{i} \hat{h}_{{S_{i} }}^{\lambda } } } \right) + w_{k + 1} \hat{h}_{{S_{k + 1} }}^{\lambda } } \right]^{1/\lambda } \hfill \\ = \left[ {\bigcup\nolimits_{{(\dot{s}_{{a_{i} }} ,\ddot{s}_{{b_{i} }} ) \in \hat{h}_{{S_{i} }} }} {\left\{ {\left( {f^{ - 1} \left( {\left( {1 - \prod\limits_{i = 1}^{k} {(1 - f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } } \right) + (1 - (1 - f(\dot{s}_{{a_{k + 1} }} )^{\lambda } )^{{w_{k + 1} }} )} \right. - } \right.} \right.} \left( {1 - \prod\limits_{i = 1}^{k} {(1 - f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } } \right)} \right. \hfill \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \quad \left. {\left. {\left. {(1 - (1 - f(\dot{s}_{{a_{k + 1} }} )^{\lambda } )^{{w_{k + 1} }} )),\mathop {\hbox{min} }\limits_{1 \le i \le k + 1} (\ddot{s}_{{b_{i} }} )} \right)} \right\}} \right]^{1/\lambda } \hfill \\ = \bigcup\nolimits_{{(\dot{s}_{{a_{i} }} ,\ddot{s}_{{b_{i} }} ) \in \hat{h}_{{S_{i} }} }} {\left\{ {\left( {f^{ - 1} \left( {\left( {1 - \left( {\prod\limits_{i = 1}^{k} {(1 - f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } } \right)(1 - f(\dot{s}_{{a_{k + 1} }} )^{\lambda } )^{{w_{k + 1} }} } \right)^{1/\lambda } } \right),\mathop {\hbox{min} }\limits_{1 \le i \le k + 1} (\ddot{s}_{{b_{i} }} )} \right)} \right\}} \hfill \\ = \bigcup\nolimits_{{(\dot{s}_{{a_{i} }} ,\ddot{s}_{{b_{i} }} ) \in \hat{h}_{{S_{i} }} }} {\left\{ {\left( {f^{ - 1} \left( {\left( {1 - \prod\limits_{i = 1}^{k + 1} {(1 - f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } } \right)^{1/\lambda } } \right),\mathop {\hbox{min} }\limits_{1 \le i \le k + 1} (\ddot{s}_{{b_{i} }} )} \right)} \right\}} . \hfill \\ \end{aligned}$$

i.e., Equation (17) holds for n = k+1. Thus, we can obtain that Eq. (17) holds for all n, which completes the proof of Theorem 1.

1.2 The Proof of Case (2) of the G-HF2DLWA Operator

Proof \(\mathop { \lim }\limits_{\lambda \to 0} {\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }} ,\hat{h}_{{S_{2} }} , \ldots ,\hat{h}_{{S_{n} }} ) = \bigcup\nolimits_{{(\dot{s}_{{a_{i} }} ,\ddot{s}_{{b_{i} }} ) \in \hat{h}_{{S_{i} }} }} {\left\{ {\left( {f^{ - 1} \left( {\left( {1 - \prod\limits_{i = 1}^{n} {(1 - f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } } \right)^{1/\lambda } } \right),\mathop {\hbox{min} }\limits_{1 \le i \le n} (\ddot{s}_{{b_{i} }} )} \right)} \right\}} .\)

First, let us consider \(\mathop {\lim }\limits_{\lambda \to 0} f^{ - 1} \left( {\left( {1 - \prod\limits_{i = 1}^{n} {(1 - f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } } \right)^{1/\lambda } } \right)\). Based on the L’ Hopital’s rule, we can prove that

$$\begin{aligned} \mathop {\lim }\limits_{\lambda \to 0} f^{ - 1} \left( {\left( {1-\prod\limits_{i=1}^{n} {(1-f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } } \right)^{1/\lambda } } \right) = f^{-1} \left( {\mathop {\lim }\limits_{\lambda \to 0} e^{{\frac{{\ln \left( {1-\prod\nolimits_ {i=1}^{n} {(1 - f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } } \right)}}{\lambda }}} }\ \ \right) \hfill \\ = f^{-1} \left( {e^{{ - \mathop {\lim }\limits_{\lambda \to 0}\ \left( {\prod\limits_{i = 1}^{n} {(1-f(\dot{s}_{{a_{i} }} )^{\lambda }\ )^{{w_{i} }} } } \right)\left( {\sum\limits_{k=1}^{n} {w_{k} \frac{ - 1}{{1 - f(\dot{s}_{{a_{k} }} )^{\lambda } }}f(\dot{s}_{{a_{k} }} )^{\lambda } \ln (f(\dot{s}_{{a_{k} }} ))} } \right)}} } \right) \hfill\\ = f^{-1} \left( {e^{{\mathop {\lim }\limits_{\lambda \to 0}\ \sum\limits_{k=1}^{n} {w_{k} \frac{{\prod\limits_{i = 1}^{n} {(1-f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } }}{{1-f(\dot{s}_{{a_{k} }} )^{\lambda } }}\ln (f(\dot{s}_{{a_{k} }} ))} }} } \right)= f^{-1} \left( {e^{{\sum\limits_{k=1}^{n} {w_{k} \left( {\prod\limits_{i = 1}^{n} {\left( {\mathop {\lim }\limits_{\lambda \to 0} \frac{{1 - f(\dot{s}_{{a_{i} }} )^{\lambda } }}{{1-f(\dot{s}_{{a_{k} }} )^{\lambda } }}}\ \right)^{{w_{i} }} } } \right)\ln (f(\dot{s}_{{a_{k} }} ))} }} } \right) \hfill \\ = f^{-1} \left( {e^{{\sum\limits_{k=1}^{n} {w_{k} \left( {\prod\limits_{i = 1}^{n} {\left( {\frac{{\ln (f(\dot{s}_{{a_{i} }} ))}}{{\ln f(\dot{s}_{{a_{k} }} )}}}\ \right)^{{w_{i} }} } } \right)\ln (f(\dot{s}_{{a_{k} }} ))} }} } \right)= f^{-1} \left( {e^{{\sum\limits_{k=1}^{n} {w_{k} \left( {\prod\limits_{i = 1}^{n} {\left( {\ln (f(\dot{s}_{{a_{i} }} ))} \right)^{{w_{i} }} } } \right)} }} } \right) \hfill \\ = f^{-1} \left( {e^{{\prod\limits_{i=1}^{n} {\left( {\ln (f(\dot{s}_{{a_{i} }} ))} \right)^{{w_{i} }} } }} } \right)= f^{-1} \left( {\prod\limits_{i=1}^{n} {f(\dot{s}_{{a_{i} }} )^{{w_{i} }} } } \right). \hfill \\ \end{aligned}$$

Therefore, the proof of Case (2) is completed.

1.3 The Proof of Theorem 2

Proof Since \(\hat{h}_{{S_{i} }} = \{ (\dot{s}_{a} ,\ddot{s}_{b} )\}\) for all i (i = 1, 2,…,n), then

$$\begin{aligned} {\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }} ,\hat{h}_{{S_{2} }} , \ldots ,\hat{h}_{{S_{n} }} ) & = \bigcup\nolimits_{{(\dot{s}_{{a_{i} }} ,\ddot{s}_{{b_{i} }} ) \in \hat{h}_{{S_{i} }} }} {\left\{ {\left( {f^{{ - 1}} \left( {\left( {1 - \prod\limits_{{i = 1}}^{n} {(1 - f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } } \right)^{{1/\lambda }} } \right),\mathop {\min }\limits_{{1 \le i \le n}} (\ddot{s}_{{b_{i} }} )} \right)} \right\}} \\ {\kern 1pt} & = \bigcup\nolimits_{{(\dot{s}_{a} ,\ddot{s}_{b} ) \in \hat{h}_{{S_{i} }} }} {\left\{ {\left( {f^{{ - 1}} \left( {\left( {1 - \prod\limits_{{i = 1}}^{n} {(1 - f(\dot{s}_{a} )^{\lambda } )^{{w_{i} }} } } \right)^{{1/\lambda }} } \right),\mathop {\min }\limits_{{1 \le i \le n}} (\ddot{s}_{b} )} \right)} \right\}} \\ {\kern 1pt} & = \bigcup\nolimits_{{(\dot{s}_{a} ,\ddot{s}_{b} ) \in \hat{h}_{{S_{i} }} }} {\left\{ {\left( {f^{{ - 1}} (f(\dot{s}_{a} )),\mathop {\min }\limits_{{1 \le i \le n}} (\ddot{s}_{b} )} \right)} \right\}} \\ {\kern 1pt} & = \{ (\dot{s}_{a} ,\ddot{s}_{b} )\} . \\ \end{aligned}$$

1.4 The Proof of Theorem 3

Proof Since \(\dot{s}_{{a_{i} }} \le \dot{s}_{{c_{i} }}\) and \(\ddot{s}_{{b_{i} }} \le \ddot{s}_{{d_{i} }}\), for all i (i = 1, 2,…,n), we have

$$\left( {1 - \prod\limits_{i = 1}^{n} {(1 - f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } } \right)^{1/\lambda } \le \left( {1 - \prod\limits_{i = 1}^{n} {(1 - f(\dot{s}_{{c_{i} }} )^{\lambda } )^{{w_{i} }} } } \right)^{1/\lambda } ,\quad \mathop {\hbox{min} }\limits_{1 \le i \le n} (\ddot{s}_{{b_{i} }} ) \le \mathop {\hbox{min} }\limits_{1 \le i \le n} (\ddot{s}_{{d_{i} }} ).$$

Then,

$$\begin{aligned} \frac{1}{{l_{1} }}\sum\nolimits_{{(\dot{s}_{{a_{i} }} ,\ddot{s}_{{b_{i} }} ) \in \hat{h}_{{S_{i} }} }} {\left( {\left( {1 - \prod\limits_{i = 1}^{n} {(1 - f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } } \right)^{1/\lambda } \times f(\mathop {\hbox{min} }\limits_{1 \le i \le n} (\ddot{s}_{{b_{i} }} ))} \right)} \hfill \\ \le \frac{1}{{l_{2} }}\sum\nolimits_{{(\dot{s}_{{c_{i} }} ,\ddot{s}_{{d_{i} }} ) \in \hat{h}_{{S_{i} }}^{'} }} {\left( {\left( {1 - \prod\limits_{i = 1}^{n} {(1 - f(\dot{s}_{{c_{i} }} )^{\lambda } )^{{w_{i} }} } } \right)^{1/\lambda } \times f(\mathop {\hbox{min} }\limits_{1 \le i \le n} (\ddot{s}_{{d_{i} }} ))} \right)} , \hfill \\ \end{aligned}$$

i.e.,

$$E ( {\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }} ,\hat{h}_{{S_{2} }} , \ldots ,\hat{h}_{{S_{n} }} )) \le E({\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }}^{'} ,\hat{h}_{{S_{2} }}^{'} , \ldots ,\hat{h}_{{S_{n} }}^{'} )),$$

where l 1 and l 2 are the numbers of 2DLVs in \({\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }} ,\hat{h}_{{S_{2} }} , \ldots ,\hat{h}_{{S_{n} }} )\) and \({\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }}^{'} ,\hat{h}_{{S_{2} }}^{'} , \ldots ,\hat{h}_{{S_{n} }}^{'} )\), respectively.

  1. 1

    If \(E ( {\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }} ,\hat{h}_{{S_{2} }} , \ldots ,\hat{h}_{{S_{n} }} )) < E({\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }}^{'} ,\hat{h}_{{S_{2} }}^{'} , \ldots ,\hat{h}_{{S_{n} }}^{'} ))\), according to the comparison laws of HF2DLEs, we can obtain \({\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }} ,\hat{h}_{{S_{2} }} , \ldots ,\hat{h}_{{S_{n} }} ) < {\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }}^{'} ,\hat{h}_{{S_{2} }}^{'} , \ldots ,\hat{h}_{{S_{n} }}^{'} ).\)

  2. 2

    If \(E ( {\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }} ,\hat{h}_{{S_{2} }} , \ldots ,\hat{h}_{{S_{n} }} )){ = }E({\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }}^{'} ,\hat{h}_{{S_{2} }}^{'} , \ldots ,\hat{h}_{{S_{n} }}^{'} ))\), since \(\dot{s}_{{a_{i} }} \le \dot{s}_{{c_{i} }}\) and \(\ddot{s}_{{b_{i} }} \le \ddot{s}_{{d_{i} }}\), for all i (i = 1, 2,…,n), then \(\dot{s}_{{a_{i} }} { = }\dot{s}_{{c_{i} }}\) and \(\ddot{s}_{{b_{i} }} { = }\ddot{s}_{{d_{i} }}\), i = 1, 2,…, n,

and thus,

$$\begin{aligned} \frac{1}{{l_{1} }}\sum\nolimits_{{(\dot{s}_{{a_{i} }} ,\ddot{s}_{{b_{i} }} ) \in \hat{h}_{{S_{i} }} }} {\left( {\left( {1 - \prod\limits_{i = 1}^{n} {(1 - f(\dot{s}_{{a_{i} }} )^{\lambda } )^{{w_{i} }} } } \right)^{1/\lambda } \times f(\mathop {\hbox{min} }\limits_{1 \le i \le n} (\ddot{s}_{{b_{i} }} )) - E ( {\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }} ,\hat{h}_{{S_{2} }} , \ldots ,\hat{h}_{{S_{n} }} ))} \right)^{ 2} } \hfill \\ { = }\frac{1}{{l_{2} }}\sum\nolimits_{{(\dot{s}_{{c_{i} }} ,\ddot{s}_{{d_{i} }} ) \in \hat{h}_{{S_{i} }}^{'} }} {\left( {\left( {1 - \prod\limits_{i = 1}^{n} {(1 - f(\dot{s}_{{c_{i} }} )^{\lambda } )^{{w_{i} }} } } \right)^{1/\lambda } \times f(\mathop {\hbox{min} }\limits_{1 \le i \le n} (\ddot{s}_{{d_{i} }} )){ - }E({\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }}^{'} ,\hat{h}_{{S_{2} }}^{'} , \ldots ,\hat{h}_{{S_{n} }}^{'} ))} \right)^{ 2} } , \hfill \\ \end{aligned}$$

i.e.,

$$V ( {\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }} ,\hat{h}_{{S_{2} }} , \ldots ,\hat{h}_{{S_{n} }} )){ = }V({\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }}^{'} ,\hat{h}_{{S_{2} }}^{'} , \ldots ,\hat{h}_{{S_{n} }}^{'} )).$$

Therefore, according to the comparison laws of HF2DLEs, we can obtain

$${\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }} ,\hat{h}_{{S_{2} }} , \ldots ,\hat{h}_{{S_{n} }} ){\text{ = G-HF2DLWA}}(\hat{h}_{{S_{1} }}^{'} ,\hat{h}_{{S_{2} }}^{'} , \ldots ,\hat{h}_{{S_{n} }}^{'} ).$$

To sum up, if \(\dot{s}_{{a_{i} }} \le \dot{s}_{{c_{i} }}\) and \(\ddot{s}_{{b_{i} }} \le \ddot{s}_{{d_{i} }}\), for all i (i = 1, 2,…,n), then

$${\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }} ,\hat{h}_{{S_{2} }} , \ldots ,\hat{h}_{{S_{n} }} ) \le {\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }}^{'} ,\hat{h}_{{S_{2} }}^{'} , \ldots ,\hat{h}_{{S_{n} }}^{'} ),$$

which completes the proof of Theorem 3.

1.5 The Proof of Theorem 4

Proof Since \(\dot{s}_{{a^{ - } }} = \mathop {\hbox{min} }\limits_{1 \le i \le n} \{ \dot{s}_{{a_{i} }} |(\dot{s}_{{a_{i} }} ,\ddot{s}_{{b_{i} }} ) \in \hat{h}_{{S_{i} }} \}\), \(\ddot{s}_{{b^{ - } }} = \mathop {\hbox{min} }\limits_{1 \le i \le n} \{ \ddot{s}_{{b_{i} }} |(\dot{s}_{{a_{i} }} ,\ddot{s}_{{b_{i} }} ) \in \hat{h}_{{S_{i} }} \}\), \(\dot{s}_{{a^{ + } }} = \mathop {\hbox{max} }\limits_{1 \le i \le n} \{ \dot{s}_{{a_{i} }} |(\dot{s}_{{a_{i} }} ,\ddot{s}_{{b_{i} }} ) \in \hat{h}_{{S_{i} }} \}\) and \(\ddot{s}_{{b^{ + } }} = \mathop {\hbox{max} }\limits_{1 \le i \le n} \{ \ddot{s}_{{b_{i} }} |(\dot{s}_{{a_{i} }} ,\ddot{s}_{{b_{i} }} ) \in \hat{h}_{{S_{i} }} \}\), we have \(\dot{s}_{{a^{ - } }} \le \dot{s}_{{a_{i} }} \le \dot{s}_{{a^{ + } }}\), \(\ddot{s}_{{b^{ - } }} \le \ddot{s}_{{b_{i} }} \le \ddot{s}_{{b^{ + } }}\), i = 1, 2,…,n.

Therefore, according to the monotonicity property of the G-HF2DLWA operator, we can obtain

$$\{ (\dot{s}_{{a^{ - } }} ,\ddot{s}_{{b^{ - } }} )\} \le {\text{G-HF2DLWA}}(\hat{h}_{{S_{1} }} ,\hat{h}_{{S_{2} }} , \ldots ,\hat{h}_{{S_{n} }} ) \le \{ (\dot{s}_{{a^{ + } }} ,\ddot{s}_{{b^{ + } }} )\} ,$$

which completes the proof of Theorem 4.

1.6 The Proof of Theorem 5

Proof Since ω = (ω 1ω 2, …, ω n )T is a position weight vector, \((\hat{h}^{\prime}_{{S_{1} }} ,\hat{h}^{\prime}_{{S_{2} }} , \ldots ,\hat{h}^{\prime}_{{S_{n} }} )\) is any permutation of \((\hat{h}_{{S_{1} }} ,\hat{h}_{{S_{2} }} , \ldots ,\hat{h}_{{S_{n} }} )\), we have \(\hat{h}_{{S_{\sigma (i)} }}^{{}} = \hat{h}^{\prime}_{{S_{\sigma (i)} }}\), then

$$\omega_{i} \hat{h}_{{S_{\sigma (i)} }}^{\lambda } = \omega_{i} \left( {\hat{h}^{\prime}_{{S_{\sigma (i)} }} } \right)^{\lambda } ,i=1,2,...,n.$$

Thus,

$$\left( {\sum\limits_{i = 1}^{n} {\omega_{i} \hat{h}_{{S_{\sigma (i)} }}^{\lambda } } } \right)^{1/\lambda } = \left( {\sum\limits_{i = 1}^{n} {\omega_{i} (\hat{h}_{{S_{\sigma (i)} }}^{'} )^{\lambda } } } \right)^{1/\lambda } ,$$

i.e.,

$${\text{G-HF2DLOWA}}(\hat{h}_{{S_{1} }} ,\hat{h}_{{S_{2} }} , \ldots ,\hat{h}_{{S_{n} }} ) = {\text{G-HF2DLOWA}}(\hat{h}_{{S_{1} }}^{'} ,\hat{h}_{{S_{2} }}^{'} , \ldots ,\hat{h}_{{S_{n} }}^{'} ),$$

which completes the proof of Theorem 9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Ju, Y. & Qu, Q. Hesitant Fuzzy 2-Dimension Linguistic Term Set and its Application to Multiple Attribute Group Decision Making. Int. J. Fuzzy Syst. 20, 2301–2321 (2018). https://doi.org/10.1007/s40815-017-0384-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0384-0

Keywords

Navigation