Skip to main content

Advertisement

Log in

Three-Dimensional Path Following of an Underactuated AUV Based on Fuzzy Backstepping Sliding Mode Control

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper addresses the problem of three-dimensional (3D) path following control for underactuated autonomous underwater vehicles in the presence of parameter uncertainties and external disturbances. Firstly, 3D path following error model was established based on virtual guidance method. Then, an adaptive robust control system was proposed using backstepping and sliding mode control, and we adopt fuzzy logic theory to approximate unknown nonlinear function to solve the problems of nonlinearity, uncertainties and external disturbances in the path following. System stability was proved by Lyapunov stable theory. Finally, simulations were conducted and the results showed that the controller is of excellent adaptability and robustness in the presence of parameter uncertainties and external disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Monique, C.: Autonomous underwater vehicles. Ocean Eng. 36(1), 1–2 (2009)

    Article  Google Scholar 

  2. Wynn, R.B., Huvenne, V.A.I.: Autonomous underwater vehicles (AUVs): their past, present and future contributions to the advancement of marine geoscience. Mar. Geol. 352(1), 451–468 (2014)

    Article  Google Scholar 

  3. Villar, S.A., Acosta, G.G., et al.: Evaluation of an efficient approach for target tracking from acoustic imagery for the perception system of an autonomous underwater vehicle. Int. J. Adv. Robot. Syst. 11, 1–13 (2014)

    Article  Google Scholar 

  4. Wynn, R.B., Huvenne, V.A., et al.: Autonomous underwater vehicles: their past, present and future contributions to the advancement of marine geoscience. Mar. Geol. 352(SI), 451–468 (2014)

    Article  Google Scholar 

  5. Xu, Y.R., Xiao, K.: Technology development of autonomous ocean vehicle. J. Autom. 33(5), 518–521 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Xu, Y.R., Pang, Y.J., Gan, Y., et al.: AUV-state-of-the-art and prospect. CAAI Trans. Intell. Syst. 1(1), 9–16 (2006)

    Google Scholar 

  7. Fossen, T.I., Breivik, M., Skjetne, R.: Line-of-sight path following of underactuated marine craft. In: The 6th IFAC Conference on Manoeuvring and Control of Marine Craft, pp. 244–249 (2003)

  8. Wang, F., Wan, L., Li, Y., et al.: A survey on development of motion control for underactuated AUV. Shipbuild. China 51(2), 227–241 (2010)

    Google Scholar 

  9. Lekkas, A.M., Fossen, T.I.: Integral LOS path following for curved paths based on a monotone cubic Hermite spline parametrization. IEEE Trans. Control Syst. Technol. 22(6), 2287–2301 (2014)

    Article  Google Scholar 

  10. Calvo, O., Rozenfeld, A., Souza, A. et al.: Experimental results on smooth path tracking with application to pipe surveying on inexpensive AUV. In: International Conference on Intelligent Robots and Systems, pp. 3647–3653 (2008)

  11. Garus, J., Zak, B.: Using of soft computing techniques to control of underwater robot. In: International Conference on Methods and MODELS in Automation and Robotics, pp. 415–419 (2010)

  12. Breivik, M., Fossen, T.I.: Principles of guidance-based path following in 2D and 3D. In: Proceeding of the 44th IEEE Conference on Decision and Control and the European Control Conference, pp. 627–634 (2006)

  13. Zheng, Z.W., Wei, H., Zhe, W.U.: Direct-adaptive fuzzy path following control for an autonomous airship. Control Decis. 29(3), 418–424 (2014)

    Google Scholar 

  14. Borhaug, E., Pavlov, A., Pettersen, K.Y.: Integral LOS control for path following of underactuated marine surface vessels in the presence of constant ocean currents. In: Proceedings of the 47th IEEE Conference on Decision Control, pp. 4984–4991 (2008)

  15. Liu, L., Wang, D., Peng, Z.H.: Path following of marine surface vehicles with dynamical uncertainty and time-varying ocean disturbances. Neurocomputing 173, 799–808 (2016)

    Article  Google Scholar 

  16. Wang, N., Er, M.J.: Direct adaptive fuzzy tracking control of marine vehicles with fully unknown parametric dynamics and uncertainties. IEEE Trans. Control Technol. 24(5), 1845–1852 (2016)

    Article  Google Scholar 

  17. Wang, N., Er, M.J., Sun, J.C.: Adaptive robust online constructive fuzzy control of a complex surface vehicle system. IEEE Trans. Cybern. 46(7), 1511–1523 (2016)

    Article  Google Scholar 

  18. Wang, N., Qian, C.J., Sun, J.C., Liu, Y.C.: Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles. IEEE Trans. Control Syst. Technol. 24(4), 1454–1462 (2016)

    Article  Google Scholar 

  19. Peng, Z.H., Wang, D., Yang, S., et al.: Containment control of networked autonomous underwater vehicles with model uncertainty and ocean disturbances guided by multiple leaders. Inf. Sci. 316(20), 163–179 (2015)

    Article  Google Scholar 

  20. Peng, Z.H., Wang, D., Yang, S., et al.: Distributed containment maneuvering of multiple marine vessels via neurodynamics-based output feedback. IEEE Trans. Ind. Electron. (2017). doi:10.1109/TIE.2652346

    Google Scholar 

  21. Liang, X., You, Y., Su, L.F., et al.: Path following control for underactuated AUV based on feedback gain backstepping. Tech. Gaz. 22(4), 829–835 (2015)

    Google Scholar 

  22. Dong, Z.P., Wan, L., Li, Y.M.: Trajectory tracking control of underactuated USV based on modified backstepping approach. Int. J. Nav. Archit. Ocean Eng. 7(5), 817–832 (2015)

    Article  Google Scholar 

  23. Ataei, M., Yousefi-Koma, A.: Three-dimensional optimal path planning for waypoint guidance of an autonomous underwater vehicle. Robot. Auton. Syst. 67, 23–32 (2015)

    Article  Google Scholar 

  24. Zhou, J.J., Tang, Z.D., Zhang, H.H., et al.: Spatial path following for AUVs using adaptive neural network controllers. Math. Probl. Eng. 2013, 1–9 (2013). doi:10.1155/2013/749689

    MathSciNet  MATH  Google Scholar 

  25. Lapierre, L., Jouvencel, B.: Robust nonlinear path-following control of an AUV. IEEE J. Ocean. Eng. 33(2), 89–102 (2008)

    Article  Google Scholar 

  26. Borhaug, E., Pettresen, K.Y.: Cross-task control for underactuated autonomous vehicles. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 602–608 (2005)

  27. Lapierre, L., Jouvencel, B.: Robust nonlinear path-following control of an AUV. IEEE J. Ocean. Eng. 33(2), 89–102 (2008)

    Article  Google Scholar 

  28. Li, R., Li, T., Bu, R., Zheng, Q., Philip Chen, C.L.: Active disturbance rejection with sliding mode control based course and path following for underactuated ships. Math. Probl. Eng. 2013, 1–9 (2013). doi:10.1155/2013/743716

    MathSciNet  Google Scholar 

  29. Liu, L., Wang, D., Peng, Z.H.: Path following of underactuated MSVs with model uncertainty and ocean disturbances along straight lines. In: 27th Chinese Control and Decision Conference (CCDC), pp. 2590–2595 (2015)

  30. Xiang, X.B., Yu, C.Y., Zhang, Q.: Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties. Comput. Oper. Res. 84, 165–177 (2017)

    Article  MathSciNet  Google Scholar 

  31. Xiang, X.B., Yu, C.Y., Zhang, Q.: On intelligent risk analysis and critical decision of underwater robotic vehicle. Ocean Eng. 140, 453–465 (2017)

    Article  Google Scholar 

  32. Liang, X., Wan, L., James, I.R.B., et al.: Path following of an underactuated AUV based on fuzzy backstepping sliding mode control. Int. J. Adv. Robot. Syst. 13(122), 1–11 (2016)

    Google Scholar 

  33. Jia, H.M.: Study of Spatial Target Tracking Nonlinear Control of Underactuated UUV Based on Backstepping. Harbin Engineering University, Harbin (2012)

    Google Scholar 

  34. Wang, H.J., Chen, Z.Y., Jia, H.M., et al.: Three-dimensional path-following control of underactuated unmanned underwater vehicle using feedback gain backstepping. Control Theory Appl. 31(1), 66–77 (2014)

    Google Scholar 

  35. Bi, F.Y., Zhang, J.Z., Wei, Y.J.: Robust position tracking control design for underactuated AUVs. J. Harbin Inst. Technol. 42(11), 1690–1695 (2010)

    MathSciNet  Google Scholar 

  36. Cui, S.P.: Motion Control for Mini Autonomous Underwater Vehicles. Harbin Engineering University, Harbin (2013)

    Google Scholar 

  37. Liang, X., Li, Y., Peng, Z.H., et al.: Nonlinear dynamics modeling and performance prediction for underactuated AUV with fins. Nonlinear Dyn. 84(1), 237–249 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51579022, 51209025) and Fundamental Research Funds for the Central Universities of China (Grant Nos. 3132016313, 3132016339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Qu, X., Wan, L. et al. Three-Dimensional Path Following of an Underactuated AUV Based on Fuzzy Backstepping Sliding Mode Control. Int. J. Fuzzy Syst. 20, 640–649 (2018). https://doi.org/10.1007/s40815-017-0386-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0386-y

Keywords

Navigation