Skip to main content

Advertisement

Log in

Finite-Time Sideslip Observer-Based Adaptive Fuzzy Path-Following Control of Underactuated Marine Vehicles with Time-Varying Large Sideslip

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

For an underactuated marine vehicle (UMV) with time-varying large sideslip and unknown dynamics, a novel finite-time sideslip observer-based adaptive fuzzy path-following control (FSO-AFPFC) scheme is proposed. Main contributions are as follows: (1) a finite-time sideslip observer (FSO) is created to exactly estimate time-varying large sideslip angle in a short time, and is incorporated into the proposed sideslip-tangent line-of-sight (SLOS) guidance scheme, and thereby achieving fast and accurate guidance which significantly enhances robustness to unknown sideslip; (2) complex unknown dynamics are identified online by adaptive fuzzy approximators without a priori knowledge on UMV dynamics; (3) by virtue of adaptive non-smooth robust compensators, approximation errors can be completely dominated, and thereby contributing to model-free adaptive fuzzy controllers which make surge and heading tracking errors globally asymptotically converge to zero. Simulation studies are conducted to demonstrate the effectiveness and superiority of the proposed FSO-AFPFC scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fossen, T.I.: Guidance and Control of Ocean Vehicle. Wiley, New York (1994)

    Google Scholar 

  2. Wang, N., Er, M.J., Han, M.: Dynamic tanker steering control using generalized-ellipsoidal-basis-function-based fuzzy neural networks. IEEE Trans. Fuzzy Syst. 23(5), 1414–1427 (2015)

    Article  Google Scholar 

  3. Wang, N., Er, M.J., Han, M.: Large tanker motion model identification using generalized ellipsoidal basis function-based fuzzy neural networks. IEEE Trans. Cybern. 45(12), 2732–2743 (2015)

    Article  Google Scholar 

  4. Xiang, X., Yu, C., Zhang, Q.: On intelligent risk analysis and critical decision of underwater robotic vehicles. Ocean Eng. 140, 453–465 (2017)

    Article  Google Scholar 

  5. Fossen, T.I., Breivik, M., Skjetne, R.: Line-of-sight path following of underactuated marine craft. In: Proceedings of the 6th IFAC Conference on Manoeuvring and Control of Marine Craft (MCMC), pp. 211–216 (2003)

  6. Breivik, M., Fossen, T.I.: Path following for marine surface vessels. In: Proceedings of OCEANS’04. MTTS/IEEE TECHNO-OCEAN’04, pp. 2282–2289 (2005)

  7. Pettersen, K.Y., Lefeber, E.: Waypoint tracking control of ships. In: Proceedings of IEEE Conference on Decision and Control, pp. 940–945 (2001)

  8. Bevly, D.M., Sheridan, R., Pettersen, K.Y.: Integrating INS sensors with GPS velocity measurements for continuous estimation of vehicle sideslip and tire corcering stiffness. In: Proceedings of American Control Conference, pp. 483–493 (2006)

  9. Brhaug, E., Pavlov, A., Pettersen, K.Y.: Integral LOS control for path following of underactuated marine surface vessels in the presence of constant ocean currents. In: Proceedings of IEEE Conference on Decision and Control, pp. 4984–4991 (2008)

  10. Caharija, W., Pettersen, K.Y.: Integral line-of-sight guidance and control of underactuated marine vehicles: theory, simulations, and experiments. IEEE Trans. Control Syst. Technol. 24(5), 1623–1642 (2016)

    Article  Google Scholar 

  11. Fossen, T.I., Pettersen, K.Y., Galeazzi, R.: Line-of-sight path following for dubins paths with adaptive sideslip compensation of drift forces. IEEE Trans. Control Syst. Technol. 23(2), 820–827 (2015)

    Article  Google Scholar 

  12. Fossen, T.I., Lekkas, A.M.: Direct and indirect adaptive integral line-of-sight path following controllers for marine craft exposed to ocean current. Int. J. Adapt. Control 31(4), 445–463 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Miao, J., Wang, S., Zhao, Z., Li, Y., Tomovic, M.M.: Spatial curvilinear path following control of underactuated AUV with multiple uncertainties. ISA Trans. 67, 107–130 (2017)

    Article  Google Scholar 

  14. Xiang, X., Lapierre, L., Jouvencel, B.: Smooth transition of AUV motion control: From fully-actuated to under-actuated configuration. Robot. Auton. Syst. 67(5), 14–22 (2015)

    Article  Google Scholar 

  15. Yan, Z., Yu, H., Zhang, W., Li, B., Zhou, J.: Globally finite-time stable tracking control of underactuated UUVs. Ocean Eng. 107, 132–146 (2015)

    Article  Google Scholar 

  16. Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley, New York (2011)

    Book  Google Scholar 

  17. Wang, N., Qian, C.J., Sun, C., Liu, Y.C.: Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles. IEEE Trans. Control Syst. Technol. 24(4), 1454–1462 (2016)

    Article  Google Scholar 

  18. Wang, N., Lv, S., Er, M.J., Chen, W.H.: Fast and accurate trajectory tracking control of an autonomous surface vehicle with unmodelled dynamics and disturbances. IEEE Trans. Intell. Veh. 1(3), 230–243 (2016)

    Article  Google Scholar 

  19. Wang, N., Qian, C., Sun, Z.Y.: Global asymptotic output tracking of nonlinear second-order systems with power integrators. Automatica 80, 156–161 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, N., Lv, S.L., Liu, Z.: Global finite-time heading control of surface vehicles. Neurocomputing 175, 662–666 (2016)

    Article  Google Scholar 

  21. Pratama, M., Anavatti, S.G., Angelov, P.P., Lughofer, E.: PANFIS: a novel incremental learning machine. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 55–68 (2014)

    Article  Google Scholar 

  22. Pratama, M., Er, M.J., Xiang, L., Oentaryo, R.J., Lughofer, E.: Data driven modeling based on dynamic parsimonious fuzzy neural network. Neurocomputing 110(8), 18–28 (2013)

    Article  Google Scholar 

  23. Wang, N., Sun, J.C., Er, M.J.: Tracking-error-based universal adaptive fuzzy control for output tracking of nonlinear systems with completely unknown dynamics. IEEE Trans. Fuzzy Syst. (2017). doi:10.1109/TFUZZ.2017.2697399

    Google Scholar 

  24. Wang, N., Sun, J.C., Han, M., Zheng, Z., Er, M.J.: Adaptive approximation-based regulation control for a class of uncertain nonlinear systems without feedback linearizability. IEEE Trans. Neural Netw. Learn. Syst. (2017). doi:10.1109/TNNLS.2017.2738918

    Google Scholar 

  25. Wang, Y., Xia, Y., Zhou, P.: Fuzzy-model-based sampled-data control of chaotic systems: a fuzzy time-dependent Lyapunov-Krasovskii functional approach. IEEE Trans. Fuzzy Syst. (2016). doi:10.1109/TFUZZ.2016.2617378

    Google Scholar 

  26. Wang, N., Sun, J.C., Er, M.J., Liu, Y.C.: A novel extreme learning control framework of unmanned surface vehicles. IEEE Trans. Cybern. 46(5), 1106–1117 (2015)

    Article  Google Scholar 

  27. Wang, Y., Shen, H., Duan, D.: On stabilization of quantized sampled-data neural-network-based control systems. IEEE Trans. Cybern. 47(10), 3124–3135 (2017)

    Article  Google Scholar 

  28. Wang, N., Gao, Y., Sun, Z., Zheng, Z.: Nussbaum-based adaptive fuzzy tracking control of unmanned surface vehicles with fully unknown dynamics and complex input nonlinearities. Int. J. Fuzzy Syst. (2017). doi:10.1007/s40815-017-0387-x

    Google Scholar 

  29. Yin, J., Wang, N., Perakis, A.N.: A real-time sequential ship roll prediction scheme based on adaptive sliding data window. IEEE Trans. Syst. Man Cybern. Syst. (2017). doi:10.1109/TSMC.2017.2735995

    Google Scholar 

  30. He, W., Dong, Y.: Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–13 (2016)

    Article  Google Scholar 

  31. Wang, Y., Zhang, H., Zhang, J., Wang, Y.: An SOS-based observer design for discrete-time polynomial fuzzy systems. Int. J. Fuzzy Syst. 17(1), 1–11 (2015)

    Article  MathSciNet  Google Scholar 

  32. Wang, Y.C., Chien, C.J.: An observer-based model reference adaptive iterative learning controller for MIMO nonlinear systems. Int. J. Fuzzy Syst. 16(1), 1168–1173 (2014)

    MathSciNet  Google Scholar 

  33. Xiang, X., Yu, C., Zhang, Q.: Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties. Comput. Oper. Res. 84, 165–177 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. He, W., Chen, Y., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46(3), 620–629 (2016)

    Article  Google Scholar 

  35. He, W., Dong, Y., Sun, C.: Adaptive neural impedance control of a robotic manipulator with input saturation. IEEE Trans. Syst. Man Cybern. Syst. 46(3), 334–344 (2016)

    Article  Google Scholar 

  36. Chu, Z., Zhu, D., Yang, S.X.: Observer-based adaptive neural network trajectory tracking control for remotely operated vehicle. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–13 (2016)

    Google Scholar 

  37. Xu, B., Yang, C., Pan, Y.: Global neural dynamic surface tracking control of strict-feedback systems with application to hypersonic flight vehicle. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2563–2575 (2015)

    Article  MathSciNet  Google Scholar 

  38. Xu, B., Zhang, Q., Pan, Y.: Neural network based dynamic surface control of hypersonic flight dynamics using small-gain theorem. Neurocomputing 173(3), 690–699 (2016)

    Article  Google Scholar 

  39. Wang, N., Er, M.J., Sun, J.C., Liu, Y.C.: Adaptive robust nonline constructive fuzzy control of a complex surface vehicle system. IEEE Trans. Cybern. 46(7), 1511–1523 (2016)

    Article  Google Scholar 

  40. Wang, N., Er, M.J.: Direct adaptive fuzzy tracking control of marine vehicles with fully unknown parametric dynamics and uncertainties. IEEE Trans. Control Syst. Technol. 24(5), 1845–1852 (2016)

    Article  Google Scholar 

  41. Wang, N., Er, M.J.: Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances. IEEE Trans. Control Syst. Technol. 23(3), 991–1002 (2015)

    Article  Google Scholar 

  42. Wang, N., Su, S.F., Yin, J., Zheng, Z., Er, M.J.: Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: an adaptive universe-based fuzzy control approach. IEEE Trans. Fuzzy Syst. (2017). doi:10.1109/TFUZZ.2017.2737405

    Google Scholar 

  43. Shtessel, Y.B., Shkolnikov, I.A., Levant, A.: Smooth second-order sliding modes: missile guidance application. Automatica 43(8), 1470–1476 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sundarapandian, V.: Global asymptotic stability of nonlinear cascade systems. Appl. Math. Lett. 15(3), 275–277 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Khalil, H.: Nonlinear Systems, 2nd edn. Prentice-Hall Press, Upper Saddle River (1996)

    Google Scholar 

  46. Wang, N., Sun, J.C., Liu, Y.C.: Direct adaptive self-structuring fuzzy control with interpretable fuzzy rules for a class of nonlinear uncertain systems. Neurocomputing 173, 1640–1645 (2016)

    Article  Google Scholar 

  47. Ghommam, J., Mnif, F., Benali, A., Poisson, G.: Observer design for euler lagrange systems: application to path following control of an underactuated surface vessel. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2883–2888 (2007)

Download references

Acknowledgements

The authors would like to thank the Editor-in-Chief, Associate Editor and anonymous referees for their invaluable comments and suggestions. This work is supported by the National Natural Science Foundation of P. R. China (under Grants 51009017 and 51379002), Applied Basic Research Funds from Ministry of Transport of P. R. China (under Grant 2012-329-225-060), China Postdoctoral Science Foundation (under Grant 2012M520629), the Fund for Dalian Distinguished Young Scholars (under Grant 2016RJ10), the Innovation Support Plan for Dalian High-level Talents (under Grant 2015R065), and the Fundamental Research Funds for the Central Universities (under Grant 3132016314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Sun, Z., Zheng, Z. et al. Finite-Time Sideslip Observer-Based Adaptive Fuzzy Path-Following Control of Underactuated Marine Vehicles with Time-Varying Large Sideslip. Int. J. Fuzzy Syst. 20, 1767–1778 (2018). https://doi.org/10.1007/s40815-017-0392-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0392-0

Keywords

Navigation