Skip to main content

Advertisement

Log in

Adaptive Re-planning of AUVs for Environmental Sampling Missions: A Fuzzy Decision Support System Based on Multi-objective Particle Swarm Optimization

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper presents the first attempt at formulating the autonomous underwater vehicles (AUVs) adaptive sampling problem considering a spatiotemporal ocean environment and energy constraints. A path re-planning system that applies fuzzy logic in decision-making is then proposed to increase the sampling efficiency and reduce power consumption to complete the mission. The goal of adaptive sampling is to plan the trajectories of gliders or AUVs to collect ocean measurements located in areas most relevant to the phenomena under investigation. However, in an actual marine environment, common conditions exist under which AUVs need to adjust their routes as the phenomena change over time. These conditions also require the monitoring of AUV energy consumption under the effect of currents that vary in space and time. This two-objective optimization problem is solved using the multi-objective particle swarm optimization algorithm to produce a set of solutions. A new fuzzy comprehensive evaluation (FCE) method, based on decision-making using fuzzy logic, is then applied to select the optimum route from the solutions by adapting and regenerating trajectories according to the ocean forecast system, analysing different scenarios, and including constraints of the total operational time and energy restrictions. Several Monte Carlo simulations are conducted to evaluate the performance and robustness of strategies determined via FCE for various scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AUV:

Autonomous underwater vehicle

FCE:

Fuzzy comprehensive evaluation

MOPSO:

Multi-objective particle swarm optimization

ST:

Periodic sampling time horizon

TT:

Limited total operational time

G :

Grey value

E :

Energy consumption

EL:

Energy limit

PM:

Plausibility measure

BM:

Belief measure

VS:

Very sufficient

SS:

Somewhat sufficient

NM:

Normal

SP:

Somewhat poor

VP:

Very poor

RI:

Rapidly increase

SI:

Slowly increase

ST:

Steady

SD:

Slowly decrease

RD:

Rapidly decrease

References

  1. Grasso, R., Cococcioni, M., Mourre, B., Chiggiato, J., Rixen, M.: A maritime decision support system to assess risk in the presence of environmental uncertainties: the REP10 experiment. Ocean Dyn. 62, 469–493 (2012)

    Article  Google Scholar 

  2. Yoerger, D.R., Jakuba, M., Bradley, A.M., Bingham, B.: Techniques for deep sea near bottom survey using an autonomous underwater vehicle. Int. J. Robot. Res. 26, 41–54 (2007)

    Article  MATH  Google Scholar 

  3. Grasso, R., Cococcioni, M., Mourre, B., Osler, J., Chiggiato, J.: A decision support system for optimal deployment of sonobuoy networks based on sea current forecasts and multi-objective evolutionary optimization. Expert Syst. Appl. 40, 3886–3899 (2013)

    Article  Google Scholar 

  4. Claus, B., Bachmayer, R., Williams, C.D.: Development of an auxiliary propulsion module for an autonomous underwater glider. In: Proceedings of the Institution of Mechanical Engineers—Part M, vol. 224, pp. 255–266 (2010)

  5. Hobson, B.W., Bellingham, J.G., Kieft, B., Mcewen, R., Godin, M., Zhang, Y.: Tethys-class long range AUVs—extending the endurance of propeller-driven cruising AUVs from days to weeks. In: 2012 IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, 2012, pp. 1–8 (2012)

  6. Alvarez, A., Caiti, A., Onken, R.: Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE J. Oceanic Eng. 29, 418–429 (2004)

    Article  Google Scholar 

  7. Lolla, T., Haley, P.J., Lermusiaux, P.F.J.: Time-optimal path planning in dynamic flows using level set equations: realistic applications. Ocean Dyn. 64, 1399–1417 (2014)

    Article  Google Scholar 

  8. Cui, R., Li, Y., Yan, W.: Mutual information-based multi-AUV path planning for scalar field sampling using multidimensional RRT*. IEEE Trans. Syst. Man Cybern. Syst. 46, 993–1004 (2016)

    Article  Google Scholar 

  9. Lermusiaux Jr., P.J.H., Yilmaz, N.K.: Environmental prediction, path planning and adaptive sampling: sensing and modeling for efficient ocean monitoring, management and pollution control. Sea Technol. 48, 254–259 (2007)

    Google Scholar 

  10. Yilmaz, N.K., Evangelinos, C., Lermusiaux, P.F.J., Patrikalakis, N.M.: Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming. IEEE J. Oceanic Eng. 33, 522–537 (2009)

    Article  Google Scholar 

  11. Heaney, K.D., Gawarkiewicz, G., Duda, T.F., Lermusiaux, P.F.J.: Nonlinear optimization of autonomous undersea vehicle sampling strategies for oceanographic data-assimilation: research articles. J. Field Robot. 24, 437–448 (2007)

    Article  Google Scholar 

  12. Ferri, G., Cococcioni, M., Alvarez, A.: Mission planning and decision support for underwater glider networks: a sampling on-demand approach. Sensors 16, 28 (2015)

    Article  Google Scholar 

  13. Cummings, J.A.: Operational multivariate ocean data assimilation. Q. J. R. Meteorol. Soc. 131, 3583–3604 (2005)

    Article  Google Scholar 

  14. Lermusiaux, P.F.J., Evangelinos, C., Tian, R., Haley, P.J., Mccarthy, J.J., Patrikalakis, N.M., et al.: Adaptive coupled physical and biogeochemical ocean predictions: a conceptual basis. In: Proceedings of International Conference on Computational Science—ICCS 2004, Kraków, Poland, June 6–9, 2004, pp. 685–692 (2004)

  15. Lermusiaux, P.F.J.: Application of the error subspace statistical estimation (ESSE) system to real-time error forecasting, data assimilation and adaptive sampling off the Central California Coast during AOSN-II. In: Symposium on Forecasting the Weather and Climate of the Atmosphere and Ocean (2004)

  16. Leonard, N.E., Paley, D.A., Davis, R.E., Fratantoni, D.M., Lekien, F., Zhang, F.: Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J. Field Robot. 27, 718–740 (2010)

    Article  Google Scholar 

  17. Xiang, X., Yu, C., Zhang, Q.: On intelligent risk analysis and critical decision of underwater robotic vehicle. Ocean Eng. 140, 453–465 (2017)

    Article  Google Scholar 

  18. Xiang, X., Yu, C., Zhang, Q.: Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties. Comput. Oper. Res. 84, 165–177 (2017)

    Article  MathSciNet  Google Scholar 

  19. Bessa, W.M., Dutra, M.S., Kreuzer, E.: Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller. Robot. Auton. Syst. 56(8), 670–677 (2008)

    Article  Google Scholar 

  20. Wang, N., Meng, J.E.: Direct adaptive fuzzy tracking control of marine vehicles with fully unknown parametric dynamics and uncertainties. IEEE Trans. Control Syst. Technol. 24, 1845–1852 (2016)

    Article  Google Scholar 

  21. Wang, N., Qian, C., Sun, J.C., Liu, Y.C.: Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles. IEEE Trans. Control Syst. Technol. 24, 1454–1462 (2016)

    Article  Google Scholar 

  22. Guo, J., Chiu, F.C., Huang, C.C.: Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle. Ocean Eng. 30, 2137–2155 (2003)

    Article  Google Scholar 

  23. Saaty, T.L., Vargas, L.G.: Models, Methods, Concepts and Applications of the Analytic Hierarchy Process. Springer, New York (2012)

    Book  MATH  Google Scholar 

  24. Deng, J.L.: Introduction grey system theory. J. Grey Syst. 1, 191–243 (1989)

  25. Kishikawa, Y., Tokinaga, S.: Prediction of stock trends by using the wavelet transform and the multi-stage fuzzy inference system optimized by the GA. IEICE Trans. Fund. Electron. Commun. Comput. 83, 357–366 (2000)

    Google Scholar 

  26. Azizzadeh, L., Zadeh, L., Zahed, L., Zadeh, L.A.: Fuzzy sets, information and control. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  27. Liu, Y., Fang, P., Bian, D., Zhang, H., Wang, S.: Fuzzy comprehensive evaluation for the motion performance of autonomous underwater vehicles. Ocean Eng. 88, 568–577 (2014)

    Article  Google Scholar 

  28. Cowlagi, R.V., Tsiotras, P.: Multiresolution path planning with wavelets: a local replanning approach. In: American Control Conference, pp. 1220–1225 (2008)

  29. Jung, D., Tsiotras, P.: Multiresolution on-line path planning for small unmanned aerial vehicles. In: American Control Conference, pp. 2744–2749 (2008)

  30. Zucker, M., Kuffner, J., Branicky, M.: Multipartite RRTs for rapid replanning in dynamic environments. In: IEEE International Conference on Robotics and Automation, pp. 1603–1609 (2007)

  31. Ferguson, D., Kalra, N., Stentz, A.: Replanning with RRTs. In: IEEE International Conference on Robotics and Automation, pp. 1243–1248 (2006)

  32. Zeng, Z., Sammut, K., Lammas, A., He, F., Tang, Y.: Efficient path re-planning for AUVs operating in spatiotemporal currents. J. Intell. Robot. Syst. 79, 135–153 (2015)

    Article  Google Scholar 

  33. Zeng, Z., Lammas, A., Sammut, K., He, F., Tang, Y.: Shell space decomposition based path planning for AUVs operating in a variable environment. Ocean Eng. 91, 181–195 (2014)

    Article  Google Scholar 

  34. Xiang, X., Lapierre, L., Jouvencel, B.: Smooth transition of AUV motion control: from fully-actuated to under-actuated configuration. Robot. Auton. Syst. 67, 14–22 (2015)

    Article  Google Scholar 

  35. Xiang, X., Yu, C., Niu, Z., Zhang, Q.: Subsea cable tracking by autonomous underwater vehicle with magnetic sensing guidance. Sensors 16, 1335 (2016)

    Article  Google Scholar 

  36. Fischer, N., Hughes, D., Walters, P., Schwartz, E.M., Dixon, W.E.: Nonlinear RISE-based control of an autonomous underwater vehicle. IEEE Trans. Robot. 30, 845–852 (2014)

    Article  Google Scholar 

  37. Peymani, E., Fossen, T.I.: Path following of underwater robots using Lagrange multipliers. Robot. Auton. Syst. 67, 44–52 (2015)

    Article  Google Scholar 

  38. Wang, N., Er, M.J., Sun, J.C., Liu, Y.C.: Adaptive robust online constructive fuzzy control of a complex surface vehicle system. IEEE Trans. Cybern. 46, 1511–1523 (2016)

    Article  Google Scholar 

  39. Wang, N., Su, S.F., Yin, J., Zheng, Z., Meng, J.E.: Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: An adaptive universe-based fuzzy control approach. IEEE Trans. Fuzzy Syst. (2017). doi:10.1109/TFUZZ.2017.2737405

  40. Zeng, Z., Sammut, K., Lian, L., He, F., Lammas, A., Tang, Y.: A comparison of optimization techniques for AUV path planning in environments with ocean currents. Robot. Auton. Syst. 82, 61–72 (2016)

    Article  Google Scholar 

  41. Zheng, Y.J., Chen, S.Y.: Cooperative particle swarm optimization for multiobjective transportation planning. Appl. Intell. 39, 202–216 (2013)

    Article  Google Scholar 

  42. Boonmee, A., Sethanan, K.: A GLNPSO for multi-level capacitated lot-sizing and scheduling problem in the poultry industry. Eur. J. Oper. Res. 250, 652–665 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lalwani, S., Singhal, S., Kumar, R., Gupta, N.: A comprehensive survey: applications of multi-objective particle swarm optimization (MOPSO) algorithm. Lect. Notes Comput. Sci. 4115, 72–80 (2013)

    MATH  Google Scholar 

  44. Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. thesis, Tokyo Institute of Technology, Tokyo, Japan (1974)

  45. Kim, J.H., Han, J.H., Kim, Y.H., Choi, S.H., Kim, E.S.: Preference-based solution selection algorithm for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 16, 20–34 (2012)

    Article  Google Scholar 

  46. Sirdhar, P., Madni, A.M., Jamshidi, M.: Multi-criteria decision making and behavior assignment in sensor networks. In: Systems Conference, pp. 1–7 (2007)

  47. Xu, Z.S.: Study on methods for multiple attribute decision making under some situations. Ph.D. Dissertation, Southeast University, Nanjing, China (2002)

  48. Smith, R.N., Das, J., Heidarsson, H., Pereira, A., Cetini’C, I., Darjany, L., et al.: USC CINAPS builds bridges: observing and monitoring the Southern California Bight. IEEE Robot. Autom. Mag. 17, 20–30 (2010)

    Article  Google Scholar 

  49. Somers, T., Hollinger, G.A.: Human–robot planning and learning for marine data collection. Auton. Robots 40, 1123–1137 (2016)

    Article  Google Scholar 

  50. Zeng, Z., Lian, L., Sammut, K., He, F., Tang, Y., Lammas, A.: A survey on path planning for persistent autonomy of autonomous underwater vehicles. Ocean Eng. 110, 303–313 (2015)

    Article  Google Scholar 

  51. Wang, N., Sun, J.C., Meng, J.E.: Tracking-error-based universal adaptive fuzzy control for output tracking of nonlinear systems with completely unknown dynamics. IEEE Trans. Fuzzy Syst. 58, 1–15 (2017)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Shanghai Sailing Program under Grant 17YF1409600 and Qingdao National Laboratory for Marine Science and Technology under Grant QNLM2016ORP0104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Zeng, Z. & Lian, L. Adaptive Re-planning of AUVs for Environmental Sampling Missions: A Fuzzy Decision Support System Based on Multi-objective Particle Swarm Optimization. Int. J. Fuzzy Syst. 20, 650–671 (2018). https://doi.org/10.1007/s40815-017-0398-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0398-7

Keywords

Navigation