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Abstract This paper presents a new type Hold (H) of two-

input fuzzy flip-flops. The definition of fuzzy H flip-flop for

different fuzzy operations is given, the characteristics

presented and selected properties pointed out. The new flip-

flop is compared with other two-input fuzzy flip-flops

described in the literature. Moreover, the potential for

hardware implementation of fuzzy flip-flops is analyzed

and diagrams, with the use of standard digital blocks,

given. Special attention is paid to Lukasiewicz fuzzy flip-

flops which allow efficient hardware realization. After the

identification of the essential features of FPGAs, the pre-

sented diagrams were implemented in a Spartan-6 device.

This allows the assessment of the suitability of FPGAs for

fuzzy flip-flop implementations, as well as reception of fast

and area optimized fuzzy flip-flops.

Keywords Fuzzy H (Hold) flip-flop � Flip-flop diagrams �
FPGA implementation

1 Introduction

For many years, fuzzy flip-flops have been considered a

replacement for binary flip-flops in fuzzy systems, acting as

primary storage elements. The concept of a fuzzy flip-flop

was presented by Hirota and Ozawa in [7]. Generalizing a

binary JK flip-flop by replacing the logical conjunction,

disjunction and negation, respectively, with t-norm, s-norm

(t-conorm) and fuzzy negation they received the fuzzy flip-

flop. Fuzzy operations do not hold distributive lows, the

non-contradiction low and the excluded middle low, so that

minterm and maxterm forms of fuzzy flip-flops character-

istic equations, derived from binary flip-flops, are not the

same (in contrast to binary flip-flops). This in turn initiated

the search for characteristic equations of fuzzy flip-flops

which ensure the identity of characteristics and enable

convenient implementation in integrated circuits.

The equation of the first fuzzy JK flip-flop, based on

Zadeh (min-max) operations, and its implementation were

shown in [7]. An algebraic JK flip-flop was described in

[11]. In [3], the authors made an attempt to specify a

bounded JK flip-flop. In [5], a lack of analogy of this flip-

flop to binary flip-flop for K ¼ 0 and J ¼ 0 was stated, and

a family of four JK flip-flops JKSA, JKAA, JKAB and JKSB

was proposed.

After the JK flip-flop, other flip-flops were also fuzzi-

fied. The definition of fuzzy SR flip-flop can be found,

among others, in [1, 6, 15]. Due to the forbidden state when

S ¼ R ¼ 1, fuzzy SR flip-flop was developed in two types,

Set and Reset [15].

This article briefly describes the characteristic equations

of binary and fuzzy flip-flops, covered so far in the litera-

ture. Against this background, we introduce a new fuzzy H

(Hold) flip-flop. The characteristic table and the definition

with characteristic equations will be given, selected prop-

erties discussed and characteristics illustrated. Diagrams of

Zadeh and bounded fuzzy flip-flops using standard digital

blocks will also be depicted. Next, the implementation of

the diagrams in the Spartan-6 FPGA XC6SLX16 device

will be presented. The implementation was preceded by the

indication of properties of FPGA structure, which will have
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a significant impact on the final results. This, in conjunc-

tion with an analysis of characteristic equations of Luka-

siewicz flip-flops, allowed us to get fuzzy flip-flops with

very good timing performance and also occupied a very

small area.

2 Binary Flip-Flops

In most cases, binary flip-flops are the basis for develop-

ment of fuzzy flip-flops. In digital systems, commonly used

two-input binary flip-flops are JK and SR flip-flops. The

characteristic table of these flip-flops is presented in

Table 1.

Q is the current state of the flip-flop and Qþ is the next

state. In order to compare the characteristic table of dif-

ferent flip-flops, the inputs in Table 1 are marked twice.

The JK flip-flop has inputs called J and K. A high state

at J while K is held low sets the output high, and a high

state at K while J is held low resets the output. When

J ¼ K ¼ 0, the flip-flop remembers a previous state, and

when J ¼ K ¼ 1 it changes its state to opposite. JK flip-

flop characteristic equations, describing its next output

state Qþ, in the form of sum of products give Eq. (1) and in

the form of product of sums Eq. (2)

Qþ
JK ¼ JQ þ KQ; ð1Þ

Qþ
JK ¼ J þ Qð Þ K þ Q

� �
: ð2Þ

SR flip-flop inputs are marked with S and R. They are,

respectively, equivalent to inputs J and K of JK flip-flop.

When S ¼ R ¼ 1, the SR flip-flop operation differs from

the JK. This input configuration is forbidden for SR flip-

flops. The characteristic equations of SR flip-flop define

Eqs. (3) and (4)

Qþ
SR ¼ S þ RQ; ð3Þ

Qþ
SR ¼ RðS þ QÞ: ð4Þ

3 Fuzzy Flip-Flops

A common practice for developing fuzzy flip-flops is to

generalize binary flip-flop characteristic equations by fuzzy

norms. Popular operations used as fuzzy norms are

Zadeh—min-max (^, _), Lukasiewicz—bounded (�, �),

algebraic and drastic operations with a complement

(A ¼ 1 � A) as a fuzzy negation [7, 16]. More complex

operations, e.g., Yager, Hamacher, Dombi, Dubois-Prade

and Frank, cause a lot of problems in hardware imple-

mentation and are rarely used (especially in simulations).

Despite the fact that some of fuzzy triples hold De Morgan

laws, none of them holds either distributive lows, the non-

contradiction low and the excluded middle low. This cau-

ses that the minterm and maxterm forms of generalized

Eqs. (1–4) are not the same. Moreover, a generalized JK

flip-flop does not meet the boundary value specified in

Table 1 [7]. To fulfill boundary demands and integrate

minterm and maxterm characteristic, the authors modified

the characteristics equations of fuzzy flip-flops. The first

fuzzy flip-flop was Zadeh (min-max) JK flip-flop with the

characteristic equation (5)

Qþ
JK ¼ J _ K

� �
^ J _ Qð Þ ^ K _ Q

� �
ð5Þ

defined in [7]. The same flip-flop with algebraic operations

was described in [11] by the characteristic equation (6)

Qþ
JK ¼ J þ Q � JQ � KQ: ð6Þ

The bounded fuzzy JK flip-flop with Eq. (7)

Qþ
JK ¼ J � K

� �
� J � Qð Þ � K � Q

� �
ð7Þ

was presented in [3]. While K ¼ 0 or J ¼ 0, the bounded

value of this flip-flop does not retain the analogy with a

binary JK flop-flop. In [5], a family of four flip-flops JKSA

(8), JKAA (9), JKAB (10) and JKSB (11) which provides

such an analogy was proposed.

Qþ
JKSA ¼ J � Q

� �
� Q

� �
� K � Q
� �

: ð8Þ

Qþ
JKAA ¼ J � Qð Þ � Q

� �
� K � Q
� �

: ð9Þ

Qþ
JKAB ¼ Z1 � Z2

� �
� Z2

� �
� Z3

� �
� Z3; ð10Þ

where

Z1 ¼ J � Kð Þ � K;

Z2 ¼ K � Q
� �

� J;

Z3 ¼ J � Q
� �

� K:

Qþ
JKSB ¼ V1 � V2

� �
� V2

� �
� V3

� �
� V3;

ð11Þ

where

V1 ¼ J � Kð Þ � K;

V2 ¼ J � Q
� �

� Q;

V3 ¼ K � Q
� �

� Q:

The Lukasiewicz JK flip-flop can also be described by

Eq. (12)

Qþ
JK ¼ r1 � r2 � r3ð Þ; ð12Þ

where

Table 1 Characteristic table of

JK and SR flip-flops
S/J R/K Qþ

JK Qþ
SR

0 0 Q Q

0 1 0 0

1 0 1 1

1 1 Q Not allowed
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r1 ¼ K � Q
� �

� K � Q
� �� �

� K � Q
� �

� Q � Qð Þ � J
� �� �

;

r2 ¼ K � Q
� �

� J � K � Q
� �� �

;

r3 ¼ K � Q � Q
� �� �

� K
� �

� K � Q � Q
� �� �

� J � Qð Þ
� �

:

This equation provides the most similar characteristic to

Lukasiewicz Set-type and Reset-type JK flip-flops, which

comes directly from generalized minterm and maxterm

forms of a binary JK flip-flop.

JKSA (8) and JKAA (9) flip-flops do not achieve a

symmetry of characteristics which have Zadeh (5) and

algebraic (6) flip-flop. Equations (10–12) allow the

achievement of such a symmetry; however, they are

complicated and therefore inconvenient for hardware

implementation.

The forbidden state, occurring in a binary SR flip-flop

when S ¼ R ¼ 1, is not desirable for fuzzy flip-flops. It will

eliminate a large range of input values, which simultane-

ously partially belong to a high state. Therefore, fuzzy SR

flip-flops are available in two types: Set and Reset. Table 2

lists the characteristic tables of two-input fuzzy flip-flops.If

S ¼ R ¼ 1, the next state of a Set-type fuzzy SR flip-flop is

high and a Reset-type is low. In this inputs configuration,

the JK flip-flop takes the next state of Q.

Set-type and Reset-type fuzzy SR flip-flops with vari-

ous fuzzy operations were discussed in [6, 15]. The char-

acteristic equation of the Set-type fuzzy flip-flop was

defined as

Qþ
SRSet ¼ S �s R �t Q

� �
; ð13Þ

and the Reset-type as

Qþ
SRReset ¼ R �t S �s Qð Þ: ð14Þ

4 The Fuzzy H Flip-Flop

The general definition of a fuzzy H flip-flop is given in

Definition 1.

Definition 1 The fuzzy H (Hold) flip-flop has two fuzzy

inputs S and R and a fuzzy output Q, reflecting its actual

inner state. A high state at the S input sets the output Q high

and a high at R resets the output. If inputs are S ¼ R ¼ 0 or

S ¼ R ¼ 1, this flip-flop holds the output at the previous

state Q.

In Table 2, the characteristic table of a fuzzy H flip-flop

is marked in bold. Definition 2 specifies the characteristic

equations of Zadeh and Lukasiewicz H flip-flop.

Definition 2 Zadeh and Lukasiewicz H flip-flops define

characteristic equations (15) and (16)

Qþ
Hs ¼ R �s Q

� �
�t S �s R �t Q

� �� �
; ð15Þ

Qþ
Hr ¼ S �t Qð Þ �s R �t S �s Qð Þ

� �
: ð16Þ

Equations (15) and (16) are derived, respectively, from

Set-type and Reset-type fuzzy SR flip-flops, but in contrast

to them, they satisfied Theorem 1.

Theorem 1 Equations (15) and (16) for Zadeh and

Lukasiewicz operations are identical.

Proof (for Zadeh H flip-flop)

Qþ
Hs ¼ R _ Q

� �
^ S _ R ^ Q

� �� �

¼ R _ Q
� �

^ S
� �

_ R _ Q
� �

^ R ^ Q
� �� �

¼ S ^ Qð Þ _ S ^ R
� �

_ R ^ Q
� �

¼ S ^ Qð Þ _ R ^ S _ Qð Þ
� �

¼ Qþ
Hr

ð17Þ

Proof (for Lukasiewicz H flip-flop) Consider equations

from (18) to (25).

R � Q ¼ R þ Q if R þ Q� 1

1 if R þ Q[ 1

(

ð18Þ

R � Q ¼ R þ Q � 1 if R þ Q[ 1

0 if R þ Q� 1

(

ð19Þ

S� R�Q
� �

¼
S if RþQ�1

SþRþQ�1 if RþQ[1&SþRþQ�1�1

1 if RþQ[1&SþRþQ�1[1

8
><

>:

ð20Þ

Qþ
Hs ¼ R�Q

� �
� S� R�Q

� �� �

¼

1 if RþQ[1&SþRþQ�1[1

SþRþQ�1 if RþQ[1&SþRþQ�1�1

SþRþQ�1 if RþQ�1&SþRþQ�1[0

0 if RþQ�1&SþRþQ�1�0

8
>>><

>>>:

¼
1 if SþRþQ�1[1

SþRþQ�1 if 1> SþRþQ�1[0

0 if SþRþQ�1�0

8
><

>:

ð21Þ

Table 2 Characteristic table of two-input fuzzy flip-flops

S/ J R/K Qþ
JK Qþ

SRSet Qþ
SRReset QH

þ

0 0 Q Q Q Q

0 1 0 0 0 0

1 0 1 1 1 1

1 1 Q 1 0 Q
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S � Q ¼
S þ Q if S þ Q� 1

1 if S þ Q[ 1

�
ð22Þ

S � Q ¼
S þ Q � 1 if S þ Q[ 1

0 if S þ Q� 1

�
ð23Þ

R � S � Qð Þ

¼
R if S þ Q[ 1

S þ R þ Q � 1 if S þ Q� 1& S þ R þ Q � 1[ 0

0 if S þ Q� 1& S þ R þ Q � 1� 0

8
><

>:

ð24Þ

Qþ
Hr ¼ S � Qð Þ � R � S � Qð Þ

� �

¼

1 if S þ Q[ 1& S þ R þ Q � 1[ 1

S þ R þ Q � 1 if S þ Q[ 1& S þ R þ Q � 1� 1

S þ R þ Q � 1 if S þ Q� 1& S þ R þ Q � 1[ 0

0 if S þ Q� 1& S þ R þ Q � 1� 0

8
>>><

>>>:

¼
1 if S þ R þ Q � 1[ 1

S þ R þ Q � 1 if 1 > S þ R þ Q � 1[ 0

0 if S þ R þ Q � 1� 0

8
><

>:

ð25Þ

Equations (21) and (25) result in (26)

Qþ
Hs ¼ Qþ

Hr; ð26Þ

which ends the proof. h

The equation of algebraic H flip-flop determines Defi-

nition 3.

Definition 3 The algebraic fuzzy H flip-flop is described

by the characteristic equation (27)

Qþ
H ¼ SRQ þ SR Q þ RQ: ð27Þ

Characteristics of the next state Qþ
H of a Zadeh H flip-flop

for different values of previous state Q are shown in Fig. 1.

The characteristics confirm that for all value of Q Zadeh H

flip-flop meets the requirements specified in Table 2 (red

dots in Fig. 1). The inner state Q can be reset if the values

of R and S fall below Q or set if S and R exceed Q. In other

cases, Q is held unchanged. If R ¼ 0, this flip-flop can be

used to store a maximum value of S. Moreover, Zadeh H

flip-flop characteristics retain excellent symmetry which

provides the same flip-flop behavior during the Set and

Reset processes. Similar symmetry also maintains charac-

teristics of Lukasiewicz and algebraic H flip-flops pre-

sented, respectively, in Figs. 2 and 3.

The characteristic of the Lukasiewicz H flip-flop is a

plain with a vertical bias equal to the state Q. Bounded flip-

flops presented so far in the literature have not had uniform

characteristics. In the case of a bounded JK flip-flop, it is

hard to even clearly determine a proper characteristic. The

Lukasiewicz H flip-flop holds its state only when the value

of S is equal to R. When inputs are not the same, the inner

state changes by the value of the difference of signals S and

R. Considering computational properties, the Lukasiewicz

H flip-flop, according to Eqs. (21) and (25), conducts the

operation Qþ ¼ Q þ S � R in the entire fuzzy range 0; 1�½ .

SR flip-flops also perform this operation, but a scope of Qþ

variation is limited. According to Eqs. (20) and (24), the

output range for Set-type fuzzy flip-flop is S; 1�½ and for

Reset-type is 0;R�
�

. A smaller range of variation is a result

of priority of one SR flip-flop input over the other. In H

flip-flop, inputs have the same priority. This property can

be used in many applications. An example may be a fuzzy

Petri net [4]. If the H flip-flop is used for modeling a fuzzy

place p, even with input and output transition activated and

a large value of S and R, the place will properly establish

the marker. The SR flip-flop, due to the limited scope of

calculation 0;R�
�

, may lose the marker. On the other hand,

if R ¼ 0, a fuzzy H flip-flop may function as an accumu-

lator of S. The algebraic H flip-flop characteristic (Fig. 3) is

a second-order polynomial surface which is curved

according to the actual value of Q. As shown in Fig. 4, the

characteristic at a diagonal R ¼ S is linear only for

Q ¼ 0:5. For other values of Q, the state of algebraic H

flip-flop is changing nonlinearly.Since the characteristic is

varying with the change of Q, Q itself is also changing in

subsequent time steps. Figure 5 presents the output value Q

of fuzzy H flip-flops in subsequent simulation steps with

initial Q0 ¼ 0:2 and inputs R ¼ 0:1, S ¼ 0:3. The inner

state Q of algebraic H flip-flop comes hyperbolically to the

state in Eq. (28)

Qþ
H ! SR

SR þ SR
; ð28Þ

which is independent of initial or actual state and depends

only on the inputs S and R. Previous Q is held when S ¼
R ¼ 0 or S ¼ R ¼ 1. If inputs S ¼ R and they are not equal

to 0 or 1, the state Q finally comes to the value 0.5. In a

simulated case, the state of Lukasiewicz H flip-flop is

increasing by the difference S � R and Zadeh H flip-flop

holds the value of S. It is worth to notice that all of fuzzy H

flip-flops are stable (in contrast to fuzzy JK flip-flop [2]).

Fuzzy flip-flops were considered to be a part of a neural

network used to produce transfer function [10]. Unique

properties of fuzzy H flip-flops can be observed when input

R ¼ S. In this case, transfer functions of fuzzy H flip-flops

are presented in Fig. 6. The algebraic flip-flop produces a

sigmoidal function, Zadeh—linear and Lukasiewicz forms
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a function like signum. These functions are the most

popular transfer functions used in neural nets. Due to the

limited speed of change of Q (Lukasiewicz H—

proportional to jS � Rj, algebraic H—hyperbolic, Fig. 5)

the hysteresis is observed. The hysteresis size depends on

the input dynamics.
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Fig. 1 Characteristics of a Zadeh H flip-flop for a Q ¼ 0:0, b Q ¼ 0:3, c Q ¼ 0:5, d Q ¼ 0:7, e Q ¼ 1:0
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A fuzzy H flip-flops allow the building of fuzzy reg-

ister. A Zadeh and a Lukasiewicz H flip-flop also permit to

easily build fuzzy shift register (Fig. 7). In a Zadeh shift

register, H flip-flops catch actual input state when R ¼ S

(Fig. 6). Lukasiewicz H flip-flops transfer input S to the

output when R ¼ Q as a result of calculation
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Fig. 2 Characteristics of a Lukasiewicz H flip-flop for a Q ¼ 0:0, b Q ¼ 0:3, c Q ¼ 0:5, d Q ¼ 0:7, e Q ¼ 1:0
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Fig. 3 Characteristics of an algebraic H flip-flop for a Q ¼ 0:0, b Q ¼ 0:3, c Q ¼ 0:5, d Q ¼ 0:7, e Q ¼ 1:0
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Qþ
H ¼ S þ Q þ Q � 1 ¼ S: ð29Þ

A fuzzy H flip-flop, like other fuzzy flip-flops, may have an

equivalent binary flip-flop with Eq. (30)

Qþ
Hb ¼ SQ þ SR þ RQ: ð30Þ

An example of binary H flip-flop diagram is shown in

Fig. 8. The gray area is an H latch. The rising edge of clock

C blocks the latch and transfers its state to the output

Q. The falling edge of C unblocks the latch and actives the

output loop. Fuzzy H flip-flops, together with a binary H,

allow the construction of a mixed fuzzy-binary system.

5 Fuzzy Flip-Flops Diagrams

A fuzzy flip-flop should store one fuzzy variable. Fuzzy

variables can take continuous or discrete values from the

range of [0, 1]. In hardware implementations of fuzzy flip-

flops, continuous variables are usually substituted for

voltage between [0V, 5V]. In contrast, discrete variables

are stored on n bits and take one of 2n values from the

discrete set 0. . .00; 0. . .01; . . .; 2n � 1½ �. In this case, the

logic low state corresponds to the series of zeros

0 ¼ 0. . .00½ �2, and the logic high state to the series of ones

1 ¼ 2n � 1 ¼ 1. . .11½ �2.
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Fig. 4 Characteristics of an algebraic H flip-flop at a diagonal R ¼ S
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Fig. 5 Subsequent states of fuzzy H flip-flops (Q0 ¼ 0:2,

R ¼ 0:1,S ¼ 0:3)
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Fig. 6 Transfer functions of fuzzy H flip-flops for R ¼ S

Fig. 7 Fuzzy shift right register with a Zadeh H flip-flops,

b Lukasiewicz H flip-flops

Fig. 8 Diagram of a binary H flip-flop
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The following part of the paper discusses the realization

of Zadeh and Lukasiewicz discrete flip-flops. Flip-flops are

ended with synchronous elements.

5.1 Zadeh Fuzzy Flip-Flops

Zadeh operations can be made using a comparator and a

multiplexer. In Fig. 9, diagrams of Zadeh (a) t-norm and

(b) s-norm are presented . The diagrams differ in connec-

tions of multiplexer inputs. For the construction of these

operations, the n-bit comparator and n of 2:1 multiplexers

are used. Similar realizations of Zadeh operations, using

comparators and multiplexers, are presented, e.g., in

[8, 12].

With the use of discussed Zadeh operations and char-

acteristic equations [for JK flip-flop Eq. (5), for Set-type

SR Eq. (13), Reset-type SR Eq. (14) and for H flip-flop

Eqs. (15) or (16)], diagrams of Zadeh fuzzy flip-flops can

be obtained. In fuzzy flip-flops diagrams, the number of

comparators and multiplexers will be proportional to the

number of fuzzy operations. The output of a fuzzy flip-flop

is ended with a synchronous element (a binary D flip-flop).

In Fig. 10, an example of a Set-type fuzzy SR flip-flop

realization is depicted. In the equation of a fuzzy H flip-

flop, there are t-norm and s-norm for the same signals. As a

result, the diagram of an H flip-flop may be reduced by one

comparator. Such realization, based on Eq. (16), is pre-

sented in Fig. 11. The number of digital blocks required to

build Zadeh fuzzy flip-flops is collected in Table 3. The

least amount of elements requires SR flip-flops and the

most JK flip-flops.

5.2 Lukasiewicz Fuzzy Flip-Flops

Lukasiewicz operation diagrams are usually based on a

carry adder with an additional element in the output,

imposing an appropriate limitation on its value. To restrict

the output value, we can use logic gates [3], multiplexers

[9, 16] or Set/Reset input of synchronous elements [14].

Diagrams of Lukasiewicz (a) t-norm and (b) s-norm

with gates at the output are shown in Fig. 12. In the case of

t-norm, the CI input of the adder is connected to a high

state. If the CO output of the adder is low (A þ B þ 12 � 1),

then the output of the circuit is also held low by AND

gates. A high state in the CO output (A þ B þ 12 [ 1)

causes the circuit to perform operation

A þ B � 1 ¼ A þ B � 2n
2 þ 12 ð31Þ

by omitting the most significant bit of the sum (carry bit

CO).

In the case of s-norm, a sum A þ B is transmitted to the

output until a high state of CO output of the adder

(A þ B[ 1). A high state at the CO, through OR gates,

holds the output in a high state.

Fig. 9 Diagram of Zadeh a t-norm, b s-norm

Fig. 10 Diagram of a Zadeh Set-type fuzzy SR flip-flop

Fig. 11 Diagram of a Zadeh fuzzy H flip-flop

Table 3 Number of digital blocks required to construct Zadeh fuzzy

flip-flops

Type JK SR Set SR Reset H

n-bit comp 5 2 2 3

mux 2:1 5n 2n 2n 4n

D flip-flop n n n n

inv 2n n n n
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Lukasiewicz operations with multiplexers work in the

same way, and their diagrams are presented in Fig. 13.

Multiplexers, controlled by the CO output of the adder,

switch t-norm state between 0 and A þ B � 1, and s-norm

state between A þ B and 1. Diagrams of Lukasiewicz

operations with synchronous elements (D flip-flops) are

illustrated in Fig. 14. Considering the s-norm, a high state

of the carry CO, connected to the S (Set) flip-flop input, sets

the output high. In the case of t-norm, the carry CO is

connected through an inverter to the input R (Reset). As a

result, a low state of CO resets the flip-flop.

The number of digital components required for con-

struction of presented diagrams of fuzzy Lukasiewicz

operations is summarized in Table 4.

Diagrams of Set-type and Reset-type fuzzy SR flip-flops

can be obtained using discussed realizations of Lukasie-

wicz operations and the characteristic equations (13) and

(14). Equation (13) is reflected by the diagram presented in

Fig. 15. The operation R � Q is composed of the adder

with AND gates (Fig. 12a), while the Lukasiewicz sum,

due to the requirement of synchronous fuzzy flip-flop

output, consists of the adder and binary flip-flops

(Fig. 14b). By analogy, the diagram of a Reset-type flip-

flop [Eq. (14)] is shown in Fig. 16.

Equation (20), which is the extension of the character-

istic equation of a Set-type fuzzy SR flip-flop (Eq. (13)),

can also be written as

Qþ
SRS ¼

S if Yr � 1

Yr � 1ð Þ þ S if Yr [ 1& Yr � 1ð Þ þ S� 1

1 if Yr [ 1& Yr � 1ð Þ þ S[ 1

8
><

>:

where Yr ¼ R þ Q:

ð32Þ

Equation (32) corresponds to the diagram presented in

Fig. 17. Multiplexers are driven by a signal CO1 of the first

adder. When CO1 ¼ 0, multiplexers provide the input of D

flip-flops with a signal S. If CO1 ¼ 1, the first adder pro-

duces a signal Yr � 1ð Þ, and the sum Yr � 1ð Þ þ S from the

second adder feeds D flip-flops. If carry signals CO1 and

CO2 are held high then the AND gate, connected to S input

of flip-flops, sets the state 1 at its output.

Similarly, from Eq. (24), describing a Reset-type fuzzy

SR flip-flop, written in the form of

Qþ
SRR ¼

R if YS [ 1

Ys þ R � 1 if Ys � 1& Ys þ R[ 1

0 if Ys � 1& Ys þ R� 1

8
><

>:

where Ys ¼ S þ Q;

ð33Þ

we can obtain the diagram presented in Fig. 18. In this

case, D flip-flops are reset at low state of CO1 and CO2. If

CO1 ¼ 0 and CO2 ¼ 1, the first adder produces a sum Ys

and the second adder performs operation (31). While

CO1 ¼ 1, the signal R feeds D flip-flops. Based on the

characteristic equations (15) and (16) of the H fuzzy flip-

Fig. 12 Diagram of Lukasiewicz a t-norm, b s-norm with logic gates

Fig. 13 Diagram of Lukasiewicz a t-norm, b s-norm with

multiplexers

Fig. 14 Diagram of Lukasiewicz a t-norm, b s-norm with D flip-

flops

Table 4 Number of digital blocks required for construction Luka-

siewicz fuzzy flip-flops

Type Figure 12 Figure 13 Figure 14

n-bit adder 1 1 1

AND/OR gate n – –

mux 2:1 – n –

D flip-flop – – n

inv – – 1	

	 only for t-norm
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flop, which contain four fuzzy operations, it could be

deduced that its diagram will be twice the size of the SR

flip-flop. However, analyzing the values taken by the flip-

flop, its diagram can be simplified. Equation (21) can be

written as

Qþ
Hs ¼

1 if Yr [ 1& Yr � 1ð Þ þ S[ 1

Yr � 1ð Þ þ S if Yr [ 1& Yr � 1ð Þ þ S� 1

Yr þ S � 1 if Yr � 1& Yr þ S[ 1

0 if Yr � 1& Yr þ S� 1:

8
>>><

>>>:

ð34Þ

Equation (34) allows to obtain the diagram of the H fuzzy

flip-flop presented in Fig. 19.Depending on the condition

Yr [ 1, operation (31) is performed in the first or in the

second adder. The boundary of a state 1 imposes the AND

gate at CO1 ¼ CO2 ¼ 1, and relating to the state 0 the

NOR gate at CO1 ¼ 0 and CO2 ¼ 0. Similarly, Eq. (25) in

the form

Qþ
Hr ¼

1 if Ys [ 1& Ys � 1ð Þ þ R[ 1

Ys � 1ð Þ þ R if Ys [ 1& Ys � 1ð Þ þ R� 1

Ys þ R � 1 if Ys � 1& Ys þ R[ 1

0 if Ys � 1& Ys þ R� 1

8
>>><

>>>:

ð35Þ

leads to the diagram of a Lukasiewicz H fuzzy flip-flop

depicted in Fig. 20. As shown in Figs. 19 and 20, in the

diagram of the H flip-flop, there is no difference which

Fig. 15 Diagram of a Lukasiewicz Set-type SR flip-flop with AND

gates

Fig. 16 Diagram of a Lukasiewicz Reset-type SR flip-flop with OR

gates

Fig. 17 Diagram of a Lukasiewicz Set-type SR flip-flop with

multiplexers

Fig. 18 Diagram of a Lukasiewicz Reset-type SR flip-flop with

multiplexers

Fig. 19 Diagram of a Lukasiewicz H flip-flop from Eq. (34)

Fig. 20 Diagram of Lukasiewicz H flip-flop from Eq. (35)
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adder will be fed by a signal S and which by R. There is

also no difference whether CI1 ¼ 0 and CI2 ¼ 1, or CI1 ¼
1 and CI2 ¼ 0.

Table 5 summarizes the number of components used to

build presented Lukasiewicz flip-flops.The least amount of

digital elements requires an H flip-flop. Its construction, in

addition to two n-bit adders, inverters and flip-flops, also

used in all other diagrams, needs one two-input AND gate

and one NOR gate.

6 Lukasiewicz Fuzzy Flip-Flops in FPGA

The main components of Lukasiewicz flip-flop diagrams,

presented in Sect. 5.2, are adders and binary flip-flops.

Primary resources in FPGAs dedicated for implementation

of high-speed adders are based on a carry logic [13]. Fig-

ure 21 represents the carry chain of L/M slice of the

Spartan-6 FPGA with additional elements. Similar struc-

tures have slices in Xilinx 7 Series FPGAs.The individual

bits of the sum si are calculated by XORCY gates

according to the equation

si ¼ ci�1 XOR pi ð36Þ

where pi ¼ ai XOR bi is produced in a LUT (lookup table).

The ai and bi are, respectively, the ith bits of input fuzzy

numbers A and B. The carry bits ci

ci ¼ aibi þ ci�1pi ð37Þ

are generated by multiplexers MUXCY. Multiplexers

MUXCY can calculate conjunction aibi as

aibi ¼ aipi ¼ bipi ¼ aibipi ð38Þ

and it is required to supply a signal ai or bi or their logical

product.

During implementation, attention has to be paid to

several important properties of the Spartan-6 slice

structure.

Property 1 D flip-flops are directly after XOR gates.

Therefore, if in Lukasiewicz flip-flop diagrams D flip-flops

occur immediately after the adder (Figs. 15, 16, 19, 20), it

Table 5 Number of digital

blocks required to construct

Lukasiewicz fuzzy flip-flops

Type Figure 15 Figure 16 Figure 17 Figure 18 Figures 19/20

n-bit adder 2 2 2 2 2

mux 2:1 – – n n –

AND gate n – 1 – 1

OR gate – n – – –

NOR gate – – – 1 1

D flip-flop n n n n n

inv n n þ 1 n n n

Fig. 21 Components of FPGA slice used for implementation of an

adder

Fig. 23 Testing diagram implemented in Spartan-6 FPGA

Fig. 22 Diagram of Lukasiewicz H flip-flop with Reset performed by

OR and AND gates
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is possible to implement them in the same slice. However, if

there are other logic elements between the adder and flip-

flops, such as multiplexers in Figs. 17 and 18, it is required

to engage additional logic resources. This increases the

occupied area, as well as decreases timing performance.

Property 2 D flip-flops in the 6 and 7 Series FPGAs have

one shared SR input which is active high. For this reason,

there is no possibility to connect signals Set and Reset to D

flip-flop at the same time . Therefore, one of these functions

must be done before applying the signal to the flip-flop.

Figure 22 presents a diagram of the H flip-flop from Fig.

20 with the Reset function performed by OR and AND

gates. The OR gate can be replaced by the XOR gate. As in

Property 1, this implementation requires additional logic

resources.

Property 3 Additional resources are also required by the

logic gates, which bound the output value based on carry

signal from adders. These gates often build a critical time

path; thus, their performance determines the maximum

operating frequency of the whole fuzzy flip-flop. The best

way to realize the inverter (Fig. 16), the XOR gate (Fig. 22

instead of OR gate) and the AND gate (Figs. 17, 19, 20) is

to use the components of carry logic which are associated

with the second adder carry chain. Timing simulations

have indicated that the inverter implemented in a XORCY

gate in the form of CI2 ¼ CI2 XOR 1ð Þ significantly

affects the maximum operating frequency (in the case of the

4-bit Lukasiewicz flip-flop, the maximum frequency has

increased from 164.962 MHz to 225.023 MHz). The AND

gate can be the product of a multiplexer MUXCY config-

ured according to equation CI1CI2 ¼ CI1CI2 þ CI10. On

the other hand, both OR and NOR gates can not be created

in such an effective way.

Property 4 LUTs, calculating propagation group pi,

allow to implement one arbitrary six-input logic function

or two five-input logic functions which share the same

inputs. The O5 output can also supply an input of MUXCY

multiplexer. As a result, logic elements on inputs of

Lukasiewicz flip-flop adders can be done in LUT

tables calculating propagation group. Thence, logic ele-

ments on adder inputs will not have a significant impact on

the occupied area and timing performance. In the case of

the H flip-flop from Fig. 22, two-output LUTs also permit

to place AND gates (of the Reset circuit) and D flip-flops in

the area of the second adder. This can be done by looping

the signal from the second adder to its subsequent input of

LUTs and producing on their O5 outputs AND gates. Such

action significantly reduces the occupied area by H flip-

flop, but additional delays, caused by the loop, have to be

reckoned with.

Taking into account the discussed properties, the best

implementation results, in terms of both occupied resources

and the maximum clock frequency, are expected for the

Set-type SR flip-flop (Fig. 15). In this fuzzy flip-flop,

according to Property 1, D flip-flop comes right after an

adder, only the Set input is used (Property 2) to which is

applied a signal CO2 without additional gates (Property 3),

and all logic gates can be integrated with adders (Property

4).

Table 6 Summary of three fuzzy flip-flop implementation in Spartan-

6 FPGA (Fig. 23)

F3 type/arch. Area [slice]

4-bit 8-bit 12-bit 16-bit

SR Set Zad./beh. 13 58 34 44

SR Reset Zad./beh. 18 41 35 41

Hs Zad./beh. 21 72 44 59

Hr Zad./beh. 34 81 54 81

JK Zad./beh. 57 87 70 98

SR Set Luk./beh. 20 23 34 42

SR Reset Luk./beh. 21 27 36 44

Hs Luk./beh. 22 30 30 40

Hr Luk./beh. 23 25 32 41

SR Set Luk./str. 6 12 18 24

SR Reset Luk./str. 9 15 21 27

Hs Luk./str. 9 15 21 27

Hr Luk./str. 9 15 21 27

F3 type/arch. Frequencymax [MHz]

4-bit 8-bit 12-bit 16-bit

SR Set Zad./beh. 263.644 211.820 166.417 164.609

SR Reset Zad./beh. 254.518 209.987 164.718 162.075

Hs Zad./beh. 238.436 114.051 109.087 111.508

Hr Zad./beh. 211.640 129.450 117.317 109.914

JK Zad./beh. 186.498 107.945 106.101 101.153

SR Set Luk./beh. 225.023 211.730 201.086 199.362

SR Reset Luk./beh. 215.285 208.638 201.248 176.616

Hs Luk./beh. 211.640 211.999 197.044 181.422

Hr Luk./beh. 215.146 211.999 190.042 185.667

SR Set Luk./str. 254.065 243.191 212.404 212.134

SR Reset Luk./str. 225.023 213.721 199.601 189.934

Hs Luk./str. 229.516 217.014 211.416 208.464

Hr Luk./str. 214.316 212.630 201.167 194.894
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7 The Results of Implementation in FPGA

Comparison of fuzzy flip-flop FPGA implementation

results was performed as follows. Zadeh and Lukasiewicz

fuzzy flip-flops were coded behaviorally in VHDL. In order

to fulfill the requirements stated in Sect. 6, Lukasiewicz

flip-flops were additionally described structurally. In

structural descriptions, primitives of Xilinx FPGA device

components (LUTs, XORCY gate, MUXCY multiplexer

and D flip-flop) were used. Components were properly

distributed with the use of RLOC attributes. Details of

fuzzy operations structural description can be found in

[14]. The Xilinx Spartan-6 FPGA XC6SLX16 was selected

as the target device, mounted on an inexpensive evaluation

kit SP601. In this device, three flip-flops connected as

shown in Fig. 23 were implemented.This diagram allows

the area occupied by three fuzzy flip-flops and their max-

imum clock frequency (associated with the delay produced

by combinatorial logic placed between synchronous ele-

ments) to be determined. A timing constraint of 200 MHz

was imposed on the clock frequency. During synthesis and

implementation, the design goal was timing performance.

The occupied area was taken from the Place and Route

Report, and the maximum operating frequency came from

the Post-PAR Static Timing Report. Table 6 summarizes

the implementation results.

Considering the occupied area, the best results for all

tested bit resolutions were obtained for structural descrip-

tions of a Lukasiewicz Set-type SR flip-flop. Their area was

equal to the resources of two adders. Three 4-bit flip-flops

took a total area of 6 slices (2 slices per flip-flop). A

slightly worse result was achieved for other bounded flip-

flops described structurally. It is connected with the

implementation of flip-flop boundaries logic. Behavioral

description outcomes were far worse than structural ones.

Among them, most of the flip-flops with the same resolu-

tion took a similar area. Significantly lower resources than

the average were required for the behavioral description of

a 4-bit Zadeh Set-type SR flip-flop. This flip-flop also

reached the highest clock frequency of all tested flip-flops.

Unfortunately, for other resolutions the outcome was much

worse. The worst results gave a Zadeh JK flip-flop. It

occupied the largest area and had the worst timing char-

acteristics. Zadeh H flip-flops had also poor performance. It

is worth to point out that the area of Zadeh flip-flops shrank

from 8-bit to 12-bit implementation. The reason was that

the synthesizer in 12-bit and 16-bit implementations used

MUXCY multiplexers.

Comparing the maximum clock frequency, it is

noticeable that the frequency decreased very fast in the

case of Zadeh flip-flops. In Lukasiewicz flip-flops, both

described behaviorally and structurally, and this decline

was much slower. Although the 4-bit Zadeh Set-type SR

flip-flop reached the highest clock frequency, bounded flip-

flops performances outweighed Zadeh flip-flops at 8-bit

resolution and higher. Structurally described flip-flops,

with the properties listed in Sect. 6, got a high clock fre-

quency compared to other flip-flops. In this case, like in the

case of the occupied area, the best results were obtained by

the Set-type SR flip-flop. Good results were also achieved

by H flip-flops, despite the fact that the structure of FPGAs

does not exactly fit to Figs. 19 and 20. The lowest clock

frequency had JK flip-flops.

8 Conclusion

The paper presents a new type H (Hold) of fuzzy flip-flop.

Its definition, characteristic equations and selected prop-

erties were covered. The characteristics of this flip-flop

with a variety of fuzzy operations are similar but more

homogeneous then corresponding JK and SR flip-flops.

Moreover, fuzzy H flip-flops can easily be used in many

applications starting from fuzzy register or shift register to

more sophisticated like neural nets, fuzzy Petri nets or

fuzzy-binary system. The article also presents schematics

of Zadeh and Lukasiewicz fuzzy flip-flops. Despite more

complex characteristic equations, the Lukasiewicz H flip-

flop demands the smallest number of digital blocks. On the

other hand, the implementation of fuzzy flip-flops in the

FPGA showed that the best fitted to the structure of FPGAs

is the Lukasiewicz Set-type SR flip-flop. Nevertheless, with

a structural description Lukasiewicz flip-flops with a small

area and high timing performance can be obtained.
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