Skip to main content
Log in

Roll Attitude Controller Design for Ships at Zero Speed

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

A longitudinal flapping zero-speed fin stabilizer system is applied to reduce the roll motion of ships at zero speed. The righting moment model of the longitudinal flapping fin stabilizer is improved by considering the eddy resistance. According to the hydrodynamic characteristics of the model, the angular velocity of the fin stabilizer is chosen as a manipulated variable to control the ship roll motion at zero speed. A master–slave control method is used to solve problems of the multi-constrained strong nonlinear relationship with fin angle, angular speed, and angular acceleration and dynamic memory function in input nonlinearity. The fuzzy sliding mode controller is conducted as the master controller to deal with parameter uncertainties and unpredictable disturbance upper bound. The output tracking feedback slave controller is used to realize the nonlinear backstepping from the roll moment to the angular velocity of the fin stabilizer, and the actual control variable is obtained. A ship with the longitudinal flapping foils is considered and the effectiveness of the proposed strategy is verified by simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Treakle, T.W., Mook, D.T., Liapis, S.I., et al.: A time-domain method to evaluate the use of moving weights to reduce the roll motion of a ship. Ocean Eng. 27(12), 1321–1343 (2000)

    Article  Google Scholar 

  2. Surendran, S., Lee, S.K., Kim, S.Y.: Studies on an algorithm to control the roll motion using active fins. Ocean Eng. 34(3), 542–551 (2007)

    Article  Google Scholar 

  3. Tzeng, C.Y., Wu, C.Y., Chu, Y.L.: A sensitivity function approach to the design of rudder roll stabilization controller. J. Mar. Sci. Technol. 9(2), 100–112 (2001)

    Google Scholar 

  4. Gaillarde G, Toxopeus S, Verwoest T et al (2006) Hydrodynamics of large motor yachts: past experience and future developments. Project 2006, Amsterdam

  5. Dallinga RP (1999) Roll Stabilization of Motor Yachts: Use of Fin Stabilizers in Anchored Conditions: Project 1999, Amsterdam

  6. van Wieringen HM (2002) Design considerations on at anchor stabilizing system. Project 2002, Amsterdam

  7. Dallinga RP (2002) Roll stabilization at anchor: hydrodynamic aspects of the comparison of anti-roll tanks and fins. Project 2002, Amsterdam

  8. Ooms J (2002) The use of roll stabilizer fins at zero speed. Project 2002, Amsterdam

  9. Nicolau, V.: The influence of the ship’s steering machine over yaw and roll motions. Annals of Dunarea de Jos University of Galati, Fascicle III, Galati, pp. 76–81 (2003)

  10. Jin, H.Z., Wang, L.J.: Research on lift model of transmutative fin stabilizer at zero speed. Shipbulid. China 51(2), 1–9 (2010)

    MathSciNet  Google Scholar 

  11. Song, J.G., Jin, H.Z., Liang, L.H.: Study on control strategy for ship stabilizer with lift feedback at all speed. Control Decis. 26(9), 1343–1352 (2011)

    Google Scholar 

  12. Wang, F., Jin, H.Z.: Design a mini-type marine attitude measurements system for self-propelled model trails. Meas. J. Int. Meas. Confed. 42(6), 954–962 (2009)

    Article  MathSciNet  Google Scholar 

  13. Wang, N., Er, M.J.: Direct adaptive fuzzy tracking control of marine vehicles with fully unknown parametric dynamics and uncertainties. IEEE. Trans. Control. Syst. Technol. 24(5), 1845–1852 (2016)

    Article  Google Scholar 

  14. Wang, N., Er, M.J., Sun, J.C., et al.: Adaptive robust online constructive fuzzy control of a complex surface vehicle system. IEEE. Trans. Cybern. 46(7), 1511–1523 (2016)

    Article  Google Scholar 

  15. Wang, N., Sun, J.C., Er, M.J.: Tracking-error-based universal adaptive fuzzy control for output tracking of nonlinear systems with completely unknown dynamics. IEEE. Trans. Fuzzy Syst. (2017). doi:10.1109/TFUZZ.2017.2697399

    Google Scholar 

  16. Meng, F., Shi, P., Karimi, H.R., et al.: Optimal design of an electro-hydraulic valve for heavy-duty vehicle clutch actuator with certain constraints. Mech. Syst. Signal Process. 68, 491–503 (2016)

    Article  Google Scholar 

  17. Bernstein, D.S., Haddad, W.M.: Nonlinear controllers for positive real systems with arbitrary input nonlinearities. IEEE. Trans. Autom. Control 39(7), 1513–1517 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ninomiya, T., Yamaguchi, I., Kida, T.: Feedback control of plants driven by nonlinear actuators via input-state linearization. J. Guid. Control Dyn. 29(1), 20–24 (2006)

    Article  Google Scholar 

  19. Hsu, K.C.: Sliding mode control for uncertain nonlinear systems with multiple inputs containing sector nonlinearities and dead-zones. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(1), 374–380 (2004)

    Article  Google Scholar 

  20. Fliegner, T., Logemann, H., Ryan, E.P.: Low-gain integral control of continuous- time linear systems subject to input and output nonlinearities. Automatica 39(3), 455–462 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ninomiya, T., Yamaguchi, I., Kida, T.: Feedback control of plants driven by nonlinear actuators via input-state linearization. J. Guid. Control Dyn. 29(1), 20–24 (2006)

    Article  Google Scholar 

  22. Wang, N., Su, S.F., Yin, J.C., Zheng, Z.J., et al.: Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: an adaptive universe-based fuzzy control approach. IEEE Trans. Fuzzy Syst. (2017). doi:10.1109/TFUZZ.2017.2737405

    Google Scholar 

  23. Shen, W., Su, X.Y.: Controller design for network-based Markovian jump systems with unreliable communication links. Complexity 21(S2), 623–634 (2016)

    Article  MathSciNet  Google Scholar 

  24. Wang, F., Jin, H.Z., Qi, Z.G.: Modeling for active fin stabilizers at zero speed. Ocean Eng. 36(17), 1425–1437 (2009)

    Google Scholar 

  25. Guglielmini, L., Blondeaux, P.: Numerical experiments on the transient motions of a flapping foil. Eur. J. Mech. B Fluids 28(1), 136–145 (2009)

    Article  MATH  Google Scholar 

  26. Wang, N., Qian, C.J., Sun, Z.Y.: Global asymptotic output tracking of nonlinear second-order systems with power integrators. Automatica 80, 156–161 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shen, W., Jiang, J., Su, X., et al.: Control strategy analysis of the hydraulic hybrid excavator. J. Frankl. Inst. 352(2), 541–561 (2015)

    Article  MATH  Google Scholar 

  28. Wang, N., Lv, S., Er, M.J., et al.: Fast and accurate trajectory tracking control of an autonomous surface vehicle with unmodeled dynamics and disturbances. IEEE Trans. Intell. Veh. 1(3), 230–243 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Gao, Y. & Zhao, R. Roll Attitude Controller Design for Ships at Zero Speed. Int. J. Fuzzy Syst. 20, 611–620 (2018). https://doi.org/10.1007/s40815-017-0402-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0402-2

Keywords

Navigation