Skip to main content
Log in

A Fuzzy Clustering Approach for Complex Color Image Segmentation Based on Gaussian Model with Interactions between Color Planes and Mixture Gaussian Model

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In complex color images, colors inside a homogeneous region might be contradistinctive and the distribution could not be described by a simple Gaussian distribution as used in traditional image segmentation algorithms. Based on the characteristics that the red, green, and blue color planes are not independent and pixels in the same neighborhood system might stand for the same object, we introduce a Gaussian model containing the interactions between different color planes to strengthen the connections both on a color plane and between color planes in a neighborhood system. Consequently, a Gaussian mixture model with the prior distribution, defined by Markov random field and acting as the weight, is employed to describe the distribution of color measures inside a homogeneous region. With the Gaussian mixture model containing the interactions between color planes, we proposed a fuzzy clustering approach for complex color image segmentation. Experiments on synthetic and real-color images, in which homogeneous regions are complex, show that the proposed algorithm compares favorably with the compared algorithms developed for the same purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cha, S., Mccleary, K.W., Uysal, M.: Travel motivations of Japanese overseas travelers: a factor-cluster segmentation approach. J. Travel Res. 34(1), 33–39 (1995)

    Article  Google Scholar 

  2. Kothari, S., Chaudry, Q., Wang, M.D.: Automated cell counting and cluster segmentation using concavity detection and ellipse fitting techniques. In: Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 795–798. Boston, MA (2009)

  3. Djokic, N., Salai, S., Kovac-Znidersic, R., Djokic, I., Tomic, G.: The use of conjoint and cluster analysis for preference-based market segmentation. Inzinerine Ekonomika-Eng. Econ. 24(4), 343–355 (2013)

    Google Scholar 

  4. Sammouda, R., Youssef, B.B.: A comparison of cluster distance metrics for the segmentation of sputum color image using unsupervised Hopfield neural network classifier. In: 2014 Global Summit on Computer and Information Technology, Sousse, pp. 1–6 (2014)

  5. Kim, Y., Kang, M., Kim, J.M.: Exploration of optimal many-core models for efficient image segmentation. IEEE Trans. Image Process. 22(5), 1767–1777 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Tan, K.S., Lim, W.H., Isa, N.A.M.: Novel initialization scheme for fuzzy c-means algorithm on color image segmentation. Appl. Soft Comput. 13(4), 1832–1852 (2013)

    Article  Google Scholar 

  7. Zhao, F., Fan, J.L., Liu, H.Q.: Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation. Expert Syst. 41(9), 4083–4093 (2014)

    Article  Google Scholar 

  8. Preetha, R., Suresh, G.R.: Performance analysis of fuzzy c-means algorithm in automated detection of brain tumor. In: Proceedings of Congress on Computer Communication, pp. 30–33 (2014)

  9. Krishna, K., Murty, M.N.: Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 29(3), 433–439 (1999)

    Article  Google Scholar 

  10. Wagstaff, K., Cardie, C., Rogers S., Schroedl, S.: Constrained K-means clustering with background knowledge. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp. 577–584 (2001)

  11. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  12. Miyamoto, S., Mukaidono, M.: Fuzzy c-means as a regularization and maximum entropy approach. In: Proceedings of the 7th IFSA Congress, vol. 2, pp. 86–92 (1997)

  13. Ichihashi, H., Miyagishi, K., Honda, K.: Fuzzy c-means clustering with regularization by K-L information. In: Proceedings of the 10th IEEE International Conference on Fuzzy System, vol. 2, pp. 924–927 (2001)

  14. Miyamoto, S., Honda, K., Ichihashi, H.: Algorithms for Fuzzy Clustering Methods in C-Means Clustering with Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

  15. Ahmed, M., Yamany, S., Mohamed, N., Farag, A., Moriarty, T.: A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imag. 21(3), 193–199 (2002)

    Article  Google Scholar 

  16. Chen, S., Zhang, D.: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. 34, 1907–1916 (2004)

    Article  Google Scholar 

  17. Szilagyi, L., Benyo, Z., Szilagyii, S., Adam, H.: MR brain image segmentation using an enhanced fuzzy C-means algorithm. In: Proceedings of the 25th Anne International Conference of IEEE EMBS, pp. 17–21 (2003)

  18. Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation algorithms incorporating local information for image segmentation. Pattern Recognit. 40(3), 825–838 (2007)

    Article  MATH  Google Scholar 

  19. Krinidis, S., Chatzis, V.: A robust fuzzy local information c-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chatzis, S.P., Varvarigou, T.A.: A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation. IEEE Trans. Fuzzy Syst. 16(5), 1351–1361 (2008)

    Article  Google Scholar 

  21. Panjwani, D.K., Healey, G.: Markov random field models for unsupervised segmentation of textured color image. IEEE Trans. Pattern Anal. Mach. Intell. 17(10), 939–954 (1995)

    Article  Google Scholar 

  22. Rangarajan, A., Chellappa, R.: Markov random field models in image processing. In: Arbib, M. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 564–567. MIT Press, Cambridge (1998)

    Google Scholar 

  23. Cesmeli, E., Wang, D.L.: Texture segmentation using Gaussian-Markov random fields and neural oscillator networks. IEEE Trans. Neural Netw. 12(2), 394–404 (2001)

    Article  Google Scholar 

  24. Wang, W., Wainwright, M. J., Ramchandran, K.: Information-theoretic bounds on model selection for Gaussian Markov random fields. In: Proceedings of IEEE International Symposium on Information Theory, pp. 1373–1377. Austin, TX (2010)

  25. Bolin, D., Wallin, J., Lindgren, F.: Multivariate latent Gaussian random field mixture models. Department of Mathematical Sciences, Division of Mathematical Statistics, Chalmers University of Technology and University of Gohenburg (2014)

    Google Scholar 

  26. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Book  MATH  Google Scholar 

  27. Zhang, J.: The mean field theory in EM procedures for Markov random fields. IEEE Trans. Signal Process. 40(10), 2570–2583 (1992)

    Article  MATH  Google Scholar 

  28. Miyamoto, S., Honda, K., Ichihashi, H.: Algorithms for Fuzzy Clustering Methods in C-Means Clustering with Applications. Springer, Berlin (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [No. 41271435; No. 41301479].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Li.

Appendix

Appendix

To obtain the derivation of the fuzzy membership u ij , we should minimize the objective function J m in Eq. (12) over it under the constraint

$$\sum\limits_{j = 1}^{c} {u_{ij} = 1\quad \forall i = 1, \ldots , \, N}$$
(18)

Introducing a Lagrange multiplier to the objective function, we have

$$L = \sum\limits_{i = 1}^{N} {\sum\limits_{j = 1}^{c} {u_{ij} d_{ij} } } + \lambda \sum\limits_{i = 1}^{N} {\sum\limits_{j = 1}^{c} {u_{ij} \log \left( {\frac{{u_{ij} }}{{\pi_{ij} }}} \right)} } + \sum\limits_{i = 1}^{N} {\varepsilon_{i} \left( {\sum\limits_{j' = 1}^{c} {u_{ij'} } - 1} \right)}$$
(19)

Differentiating L with respect to u ij leads to

$$\frac{\partial L}{{\partial u_{ij} }} = d_{ij} + \lambda \log \left( {\frac{{u_{ij} }}{{\pi_{ij} }}} \right) + \lambda + \varepsilon_{i} = 0$$
(20)

u ij is solved from Eq. (20) as

$$u_{ij} = \pi_{ij} \exp \left( { - \frac{{d_{ij} }}{\lambda } - \frac{{\lambda + \varepsilon_{i} }}{\lambda }} \right)$$
(21)

Since u ij satisfies Eq. (18), substitute Eq. (21) in to Eq. (18), the expression of u ij is obtained

$$u_{ij} = \frac{{\pi_{ij} \exp \left( { - \frac{{d_{ij} }}{\lambda }} \right)}}{{\sum\nolimits_{j' = 1}^{c} {\pi_{ij'} \exp \left( { - \frac{{d_{ij'} }}{\lambda }} \right)} }}$$
(22)

To obtain the estimates of μ j , we need to conduct the minimization of J m in Eq. (12) over it

$$\frac{{\partial J_{m} }}{{\partial {\varvec{\upmu}}_{j} }} = - \left( {{\mathbf{I}} + \sum\limits_{{i' \in N_{i} }} {{\varvec{\upalpha}}_{j} } } \right)\sum\limits_{i = 1}^{N} {u_{ij} {\varvec{\Sigma}}_{j}^{ - 1} \left[ {\left( {{\mathbf{x}}_{i} - {\varvec{\upmu}}_{j} } \right) - {\varvec{\upalpha}}_{j} \left( {\sum\limits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right)} } \right)} \right]} = 0$$
(23)

For 8-Neighborhood system, we have its expression as follows

$${\varvec{\upmu}}_{j} = \left( {I - 8{\varvec{\upalpha}}_{j} } \right)^{ - 1} \frac{{\sum\nolimits_{i = 1}^{N} {u_{ij} \left( {{\mathbf{x}}_{i} - {\varvec{\upalpha}}_{j} \sum\nolimits_{{i' \in N_{i} }} {{\mathbf{x}}_{i'} } } \right)} }}{{\sum\nolimits_{i = 1}^{N} {u_{ij} } }}$$
(24)

Derivate J m over (−1) j , we can get

$$\frac{{\partial J_{m} }}{{\partial {\varvec{\Sigma}}_{j}^{ - 1} }} = \frac{1}{2}\sum\limits_{i = 1}^{N} {u_{ij} \left\{ { - {\varvec{\Sigma}}_{j} + \left[ {\left( {{\mathbf{x}}_{i} - {\varvec{\upmu}}_{j} } \right) - {\varvec{\upalpha}}_{j} \left( {\sum\limits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right)} } \right)} \right]\left[ {\left( {{\mathbf{x}}_{i} - {\varvec{\upmu}}_{j} } \right) - {\varvec{\upalpha}}_{j} \left( {\sum\limits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right)} } \right)} \right]^{\text{T}} } \right\}}$$
(25)

The expression of j is

$${\varvec{\Sigma}}_{j} = \frac{{\sum\nolimits_{i = 1}^{N} {u_{ij} \left[ {\left( {{\mathbf{x}}_{i} - {\varvec{\upmu}}_{j} } \right) - {\varvec{\upalpha}}_{j} \sum\nolimits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right)} } \right]\left[ {\left( {{\mathbf{x}}_{i} - {\varvec{\upmu}}_{j} } \right) - {\varvec{\upalpha}}_{j} \sum\nolimits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right)} } \right]^{\text{T}} } }}{{\sum\nolimits_{i = 1}^{N} {u_{ij} } }}$$
(26)

The third term of Eq. (15) for d ij can be rewritten as

$$\begin{aligned} & \left[ {\left( {{\mathbf{x}}_{i} - {\varvec{\upmu}}_{j} } \right) - {\varvec{\upalpha}}_{j} \sum\limits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right)} } \right]^{\text{T}} {\varvec{\Sigma}}_{j}^{ - 1} \left[ {\left( {{\mathbf{x}}_{i} - {\varvec{\upmu}}_{j} } \right) - {\varvec{\upalpha}}_{j} \sum\limits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right)} } \right] \hfill \\ & \quad= \left( {{\mathbf{x}}_{i} - {\varvec{\upmu}}_{j} } \right)^{\text{T}} {\varvec{\Sigma}}_{j}^{ - 1} \left( {{\mathbf{x}}_{i} - {\varvec{\upmu}}_{j} } \right) - \left[ {{\varvec{\upalpha}}_{j} \sum\limits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right)} } \right]^{\text{T}} {\varvec{\Sigma}}_{j}^{ - 1} \left( {{\mathbf{x}}_{i} - {\varvec{\upmu}}_{j} } \right) \hfill \\ & \quad - \left( {{\mathbf{x}}_{i} - {\varvec{\upmu}}_{j} } \right)^{\text{T}} {\varvec{\Sigma}}_{j}^{ - 1} {\varvec{\upalpha}}_{j} \sum\limits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right)} \hfill \\ & \quad+ \left[ {{\varvec{\upalpha}}_{j} \sum\limits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right)} } \right]^{\text{T}} {\varvec{\Sigma}}_{j}^{ - 1} {\varvec{\upalpha}}_{j} \sum\limits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right)} \hfill \\ \end{aligned}$$
(27)

The derivation J m over α j is

$$\begin{aligned} \frac{{\partial J_{m} }}{{\partial {\varvec{\upalpha}}_{j} }} = \frac{1}{2}\sum\limits_{i = 1}^{N} {u_{ij} \left\{ { - {\varvec{\Sigma}}_{j}^{ - 1} \left( {{\mathbf{x}}_{i} - {\varvec{\upmu}}_{j} } \right) \, \left[ {{\varvec{\upalpha}}_{j} \sum\limits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right)} } \right]^{\text{T}} - \left( {{\varvec{\Sigma}}_{j}^{ - 1} } \right)^{\text{T}} \left( {{\mathbf{x}}_{i} - {\varvec{\upmu}}_{j} } \right) \, \left[ {{\varvec{\upalpha}}_{j} \sum\limits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right)} } \right]^{\text{T}} } \right.} \hfill \\ \left. { + {\varvec{\Sigma}}_{j}^{ - 1} {\varvec{\upalpha}}_{j} \sum\limits_{{i{\prime } \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right) \, \left( {\sum\limits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right)} } \right)}^{\text{T}} +\, \left( {{\varvec{\Sigma}}_{j}^{ - 1} } \right)^{\text{T}} {\varvec{\upalpha}}_{j} \sum\limits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right) \, \left( {\sum\limits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right)} } \right)}^{\text{T}} } \right\} \hfill \\ \end{aligned}$$
(28)

Let Eq. (28) be equal to 0, we can solve α j as

$${\varvec{\upalpha}}_{j} = \sum\limits_{i = 1}^{N} {u_{ij} \left( {{\mathbf{x}}_{i} - {\varvec{\upmu}}_{j} } \right) \, \left[ {\sum\limits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right)} } \right]^{\text{T}} } \left\{ {\sum\limits_{i = 1}^{N} {u_{ij} } \sum\limits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right) \, } \left[ {\sum\limits_{{i' \in N_{i} }} {\left( {{\mathbf{x}}_{i'} - {\varvec{\upmu}}_{j} } \right)} } \right]^{\text{T}} } \right\}^{ - 1}$$
(29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, Y. & Zhao, Q. A Fuzzy Clustering Approach for Complex Color Image Segmentation Based on Gaussian Model with Interactions between Color Planes and Mixture Gaussian Model. Int. J. Fuzzy Syst. 20, 309–317 (2018). https://doi.org/10.1007/s40815-017-0411-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0411-1

Keywords

Navigation