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Abstract—Alzheimer’s Disease (AD) is a common form of dementia which mostly affects elderly people. Gradual 

loss in memory and declining cognitive functions are core symptoms associated with AD. Conventional brain 

images do not provide sufficient information to diagnose AD at an early stage. To delay the progression of memory 

impairment there is a dire need to develop systems capable of early AD diagnosis. This paper describes a proposed 

fuzzy method for inferring the risk of dementia using the brain cortical thickness and hippocampus thickness. The 

aim is to develop a reliable index that allows the evaluation of brain health. The dementia index poses potential to 

become a biologically-based biomarker for the clinical assessment of patient’s dementia. Results show that the 

inference value of patient with mild cognitive impairment (MCI) is significantly higher than that of healthy 

(Control) or schizophrenia (SCZ) patients. Our results suggest that a higher inference value indicates that the patient 

is at higher risk and is more likely to eventually progress to AD. The system was also tested with age-associated 

memory impairment (AAMI) patients. The results confirm that our model is able to distinguish between these four 

patient groups.  
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1. INTRODUCTION 

According to Alzheimer’s Disease International (ADI), there were an estimated 44.4 million people with 

dementia worldwide in 2013 which is projected to increase to 75.6 million in 2030, and 135.5 million in 2050. 

Moreover, with 7.7 million new cases of dementia every year, there is one new case diagnosed every 4 seconds [1]. 

Developed countries are impacted the most because of their aging population. The cost of healthcare associated with 

dementia is estimated to be $604 million a year worldwide, and this cost is mostly driven by late AD diagnosis. 

Several attempts have been made to develop early AD diagnosis systems. 

Dickerson et al. [2-3] biologically marked brain amyloid- amino acids and classified the markers into high, 

medium and low risk of AD symptoms. Among the 159 participants in the study, 19 were classified as high risk, 116 

as medium risk and 24 as low risk. After three years of observation on participant variation, 21.4% of the high risk 

group had reduced cognition, 6.6% for medium risk group and 0% for low risk group. This study verified that the 

variation of cortical thickness is highly correlated to the risk that progresses to AD.  

Chung et al. [4-5] described a framework to determine the brain cortical thickness from MRI and further 

determined the cortical thickness distribution characteristics using signal processing methods.  

This study improved upon Chung et al.’s approach [4-5] by the introduction of fuzzy logic. Moreover, this work 

extends previous studies on the correlation between cortical thickness and dementia status [6,7] by introducing the 

hippocampus volume as a parameter into the model to enhance the prediction accuracy. Brain atrophy is a common 

biological process associated with AD and normal aging brains. The hippocampal atrophy and thinner cortical 

cortex are common neuroimaging characteristics in both populations. Thus, we approach our study using fuzzy logic 

since hard true and false boundaries cannot always be defined [15]. 

This paper is organized as follows. In section 2 a brief introduction of the software used for analysis is described. 

Section 3 explains the processes of 3D image reconstruction. In Section 4 the detailed fuzzy modeling is presented 

to infer the dementia risk. Experimental results and their analyses are described in Section 5. Conclusions are made 

in Section 6. 

2. METHODS 

The first step in our system consists of constructing the 3D model of the patients’ brains using FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu/), an open source application developed by Harvard University that takes T1-

http://surfer.nmr.mgh.harvard.edu/
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weighted MRI as input. First, it is decided if a single brain hemisphere is to be analyzed or whether to analyze the 

entire brain. Next, heat kernel smoothing is used to simulate the heat transmission and subsequently to remove 

noise. Third, the spherical brain image is used to reconstruct the distribution of the cortical thickness which again is 

converted into a 2D map. Finally, the min-max diagram method [8] is used to match the homology of cortical 

thickness and plot its topological characteristics. The goal is to identify at-risk patients. Therefore, images in this 

study included MCI (a high-risk group that has progressed into AD), AAMI (a low-risk group that exhibits the same 

memory loss and declining cognitive function as the MCI group), SCZ (a psychiatric disorder group with memory 

deficit and cognitive dysfunction) and a control group.   

Both unilateral hippocampus volumes were analyzed using FreeSurfer. Data such as the number of voxels and 

volume of brain sub-regions are provided by FreeSurfer. An example of such statistics is illustrated in Fig. 1, which 

displays the volume of each unilateral hippocampus (in mm3) and other brain sub-regions such as the hippocampus 

volume and the total intracranial volume (TIV). TIV is a reference used to normalize and compare the volumes 

among the different patients while reconstructing the brain model. Though the hippocampus is present in both the 

brain hemispheres, the input of our fuzzy system is a single hippocampus seen as the summation of the left and right 

volumes.  

The input to the proposed fuzzy system is the matching homology of birth and death from cortical thickness, 

either of the overall brain or unilateral hemisphere. By projecting the centroids of the fuzzy clusters onto the birth-

axis and death-axis we are able to draw the corresponding membership functions and the fuzzy rules of the system.  

Figure 2 illustrates the processing steps involved. The third input membership functions are designed differently 

for hippocampus step. By ordering the normalized hippocampus volumes of all the patients, they are constructed 

using the highest, medium and smallest volumes. The normalized volumes are scaled by a factor of 103 due to their 

small magnitude. 

Ethics Statement: Written informed consent was obtained from all participants. This study was approved by the 

Institutional Review Board of the University of Cincinnati (IRB 09-04-16-01EE). The research was conducted 

according to the principles of the Declaration of Helsinki. A detailed personal history, general health examination, 

and lifestyle questionnaire were conducted with all participants. 
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Fig. 1.  File aseg.stats. Rows 12 and 27 show the left and right hippocampus volumes, respectively. 

 

Fig. 2.  The steps of the proposed method to infer the risk of AD. 

3. DATA PREPARATION 

 This section describes the steps needed to prepare the input to the fuzzy system. 

3.1 3D Brain Reconstruction 

 The first step consists of making a 3D model of the patient’s brain, retrieving the information about the 

hippocampus volumes and to normalize the volumes using the intracranial volume. Given MRI images of the 
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patient’s brain, FreeSurfer is capable of performing several operations, including cortical surface reconstruction, 

cortical segmentation, cortical thickness estimation and subregions volume estimation. The tools in the suite 

construct models of the boundary between white matter and cortical gray matter as well as the pial surface by going 

through several stages [10] while registering the volume according to a Talaraich atlas. Once these surfaces are 

known, an array of anatomical measures can be acquired, including cortical thickness, surface area, curvature, and 

surface normal at each point on the cortex. The processing procedures for the creation of cortical models require 

good quality T1 weighted MRI data, such as a Siemens MPRAGE (examples of appropriate Siemens scanner 

protocols) or GE SPGR sequence with approximately 1 mm3 resolution (although a variety of quality data sets can 

be processed with additional manual intervention). Thickness should not exceed 1.5 mm3 (~1mm3 is ideal). 

FreeSurfer provides the users two different tools to analyze and modify reconstructed images. 

 TkMedit is the main volume viewer and editor for FreeSurfer. It can be used to view volumes, overlay surfaces 

onto 2D, edit reconstruction defects, view functional overlays and time courses, view segmentations, and draw or 

edit labels. 

 TkSurfer allows visualization and navigation of cortical surface data. TkSurfer can also display functional or 

curvature data. The color sections of the original clip, white matters, pial, and tissues are shown in Fig. 3 to Fig. 6, 

respectively. The 3D model reconstruction of the left and right hemisphere highlighting the cortical thickness 

overlay is shown in Fig. 7 and Fig. 8, respectively. 

 

Fig. 3. Original anatomical data. 
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Fig. 4. White matter (in yellow). 

 

Fig. 5. Pial (in red). 

 

Fig. 6. Brain tissue distribution. 
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Fig. 7. 3D reconstruction of the left hemisphere plus cortical thickness overlay. The color scale represents the brain 

thickness in that specific point. 

 

Fig. 8. 3D reconstruction of the right hemisphere and cortical thickness overlay. The color scale represents the brain 

thickness in that specific point. 

3.2 Heat Kernel Smoothing 

In order to enhance the signal-to-noise ratio we apply Gaussian kernel smoothing [11-14]. However, since the 

weights of the Gaussian kernel smoothing are determined by the Euclidean distance, it was decided to use the 

geodesic distance which works better in these cases. The difference between the two distances is shown in Fig. 9. 

The manifold smoothed data construct both a curve along the geodesic and the isotropic kernel. The heat kernel 

smoothing is a kernel with isotropic heat transfer and diffusion formula [11-14]. 

Consider the following random model of the cortical thickness on manifold ∂Ω [11-14]: 

𝑌(𝑝) =  𝜃(𝑝) + 𝜀(𝑝), 𝑝 ∈ 𝜕𝛺, (1) 

where Y(p) is the thickness measurement, (p) is the true unknown thickness, (p) is Gaussian noise with mean 0 

and variance 0.22. 𝛛𝛀 is assumed to be a 2D Riemannian manifold. Consider the positive definite kernel K(p,q) of 

the form: 
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𝐾𝜎(𝑝, 𝑞) = ∑ 𝑒−𝜆𝑙𝜎

∞

𝑖=0

∑ 𝑌𝑙𝑚(𝑝)𝑌𝑙𝑚(𝑞)

𝑚=𝑙

𝑚=−𝑙

. (2) 

where the ordered eigenvalues, 𝜆00 ≥ 𝜆1𝑚1 ≥ 𝜆2𝑚2 …  ≥ 0, satisfy: 

∫ 𝐾(𝑝, 𝑘)𝑌𝑙𝑚(𝑞)𝑑𝜇(𝑞) =  𝜆𝑙𝑚𝑌𝑙𝑚(𝑝)

𝑆2

. (3) 

This is a special case of the Mercer’s theorem. Without the loss of generality, we assume the kernel is normalized as 

follows: 

∫ 𝐾(𝑝, 𝑘)𝑑𝜇(𝑞) =  1

𝑆2

. (4) 

The smooth functional estimation h of measurement f is searched in hk that minimizes the integral of the weighted 

square distance between f and h: 

∑ ∑ 𝜆𝑙𝑚𝑓𝑙𝑚𝑌𝑙𝑚 = arg 𝑚𝑖𝑛ℎ∈ℎ𝑘
∫ ∫ 𝐾(𝑝, 𝑘)|𝑓(𝑞) − ℎ(𝑝)|2

𝑆2𝑆2

𝑙

𝑚=−𝑙

𝑘

𝑙=0

𝑑𝜇(𝑝)𝑑𝜇(𝑞). (5) 

Kernel smoothing is defined as the integral convolution: 

𝐾 ∗ 𝑓(𝑝) = ∫ 𝑓(𝑞)𝑘(𝑝, 𝑞)𝑑𝜇(𝑞)

𝑆2

=  ∑ ∑ 𝜆𝑙𝑚〈𝑓, 𝑌𝑙𝑚〉

𝑙

𝑚=−𝑙

∞

𝑙=0

𝑌𝑙𝑚(p). (6) 

The flowchart of heat kernel smoothing method is shown in Fig. 10. Let the n vertex of polygon sphere 𝑺 be 

𝒑𝟏, … , 𝒑𝒏. The neighborhood set of vertex is calculated, followed by the average weights 𝐖̃𝛔 and 𝒁(𝒑𝒊), and then 𝒀 

is updated. The process is repeated for the preset iterations k. The effectiveness of the method is verified by 

comparing the real data with 20, 100, and 200 iterations, with simulated data with 20, 200, and 5,000 iterations. Fig. 

11 shows the heat kernel smoothing applied to the data for one participant using Matlab. 
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Fig. 9. Euclidian distance vs geodesic distance. 

 

Fig. 10. Heat kernel smoothing flowchart. 

 

Fig. 11. Matlab plot of the heat kernel smoothing result applied to a participant with parameters k = 30 and 𝜎 = 

0.0005. 
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3.3 Min-Max Diagram 

A diagram proposed by Chung et al. [5] defines as Morse function, which is a function with its extremes 

independent while being non-degenerate. Let a Morse function be 𝜇̂ and define a sublevel set as follows: 

𝑅(𝑦) =  𝜇̂−1(−∞, 𝑦), (7) 

The sublevel set must satisfy the condition of 𝛍̂ ≤ 𝒚. When 𝒚 increases from−∞ the number of links in the set 

𝑹(𝒚)  sublevel vary whenever an extreme is surpassed. Assuming there are local minima 𝒈𝟏, 𝒈𝟐, … , 𝒈𝒎 and local 

maxima 𝒉𝟏, 𝒉𝟐, … , 𝒉𝒏, since the extremes in the Morse function are assumed to be independent to each other, the 

local minima and maxima can be re-arranged in ascending order as follows: 

𝑔1 <  𝑔2 < ⋯ <  𝑔𝑚 (8) 

ℎ1 <  ℎ2 < ⋯ <  ℎ𝑛 (9) 

At each local minimum there is a birth. When it meets a death from a local maximum both the birth and the 

death are fused to become a new sublevel in the sublevel set. This can be used to calculate the topological invariant 

of the sublevel set such as Euler characteristic and Betti numbers. The procedure to fuse the birth and the death is 

summarized as follows [5]: 

Step 1: 𝐻 ← {ℎ1, … , ℎ𝑛} 

Step 2: 𝑖 ← 𝑚  

Step 3: ℎ𝑖
∗ = arg 𝑚𝑖𝑛ℎ𝑗∈𝐻{ℎ𝑗| ℎ𝑗 > 𝑔𝑖 , ℎ𝑗~𝑔𝑖} 

Step 4: 𝐼𝑓 ℎ𝑖
∗  ≠  ∅, 𝑝𝑎𝑖𝑟(𝑔𝑖 , ℎ𝑗) 

Step 5: 𝐻 ← 𝐻 −  ℎ𝑖
∗ 

Step 6: 𝐼𝑓 𝑖 > 1, 𝑖 ← 𝑖 − 1 𝑎𝑛𝑑 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 3 

 H is the ordered set of local maxima and m is the number of local minima. In order to become a couple it 

chooses the smallest value that is larger than itself among the local maxima. If the candidate levels are not 

empty, the couple is generated. The couple is then removed from the ordered set H. The procedure continues 

until all the local minima have been coupled.  

To illustrate how to couple both birth and death, we consider a curve plotted in Fig. 12. There are seven 

extremes labeled on the curve where the local minima are ordered by C<A<E<G while the local maxima are 
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ordered  B<F<D. Based on the coupling rule the nearest neighbor is chosen as couple. Consequently, (A,B) and 

(G,F) become sublevels. Although both local minima C and E are close to local maximum D E is closer to D 

that makes (E,D) a couple. Finally, each (birth, death) couple is plotted as the topological characteristic on  the 

right hand side of Fig. 12. 

 

Fig. 12. Birth and death coupling. Left: a curve with seven extremes; right: topological characteristic. 

4. THE FUZZY SYSTEM 

Following Zadeh’s work [15] we propose a fuzzy system which aims to indicate dementia risk on patients by 

analyzing their brain cortical thickness and hippocampus volume. The couple birth and death, and the normalized 

hippocampus volume are then the inputs of the system. While the first two inputs of our system are labeled Thin, 

Medium or Thick, the hippocampus is labeled Low, Medium or High as shown in Fig. 13, Fig. 14 and Fig. 15, 

respectively. To come up with birth and death inputs, given the persistence diagram we decided to cluster the points 

by fuzzy c-means where the maximum number of iterations is 1,000 and the stop criterion ε is 10-5. The control and 

MCI participants where used as a training set to construct the inputs. Suppose three clusters are considered. The 

resulting centroids of our system are (2.2875, 3.4631), (2.5109, 4.0327) and (2.0200, 2.8125). Successively, we 

project these onto the x and y axis in order to design the input membership functions. The procedure is summarized 

in Fig. 16 while Fig. 17 shows the output membership functions. The hippocampus membership functions are 

constructed by ordering the volumes and taking the highest, medium and lowest. The output of the system is the risk 

of contracting dementia, labeled as Low, Medium or High and it comes from the 9 partitioned areas. The fuzzy rules 

base is composed by 27 different rules that are given in Table 1 and the partitioning is shown in Fig. 18. For each of 

the areas we calculate the ratio of MCI couples and we take the result of Thin – Thin, Medium – Medium and 

Thick – Thick to design the output membership functions. The ordered areas distributions are shown in Table 2. 
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Table 1. Proposed fuzzy rule base. 

Rule No. Birth Death Hippocampus Output 

R1 Thin Thin Low High 

R2 Thin Thin Medium High 

R3 Thin Thin High High 

R4 Thin Medium Low High 

R5 Thin Medium Medium High 

R6 Thin Medium High High 

R7 Thin Thick Low Medium 

R8 Thin Thick Medium Medium 

R9 Thin Thick High Medium 

R10 Medium Thin Low High 

R11 Medium Thin Medium Medium 

R12 Medium Thin High Medium 

R13 Medium Medium Low Medium 

R14 Medium Medium Medium Medium 

R15 Medium Medium High Medium 

R16 Medium Thick Low Medium 

R17 Medium Thick Medium Medium 

R18 Medium Thick High Low 

R19 Thick Thin Low Low 

R20 Thick Thin Medium Low 

R21 Thick Thin High Low 

R22 Thick Medium Low Low 

R23 Thick Medium Medium Low 

R24 Thick Medium High Low 

R25 Thick Thick Low Low 

R26 Thick Thick Medium Low 

R27 Thick Thick High Low 
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Fig. 13. Birth membership functions. 

 

Fig. 14. Death membership functions. 

 

Fig. 15. Hippocampus volume membership functions. 
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Fig. 16. Projection of the centroids with consequent input membership function design. 

 

Fig. 17. Output membership functions. 

 

Fig. 18. Nine partitioned areas. 
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Table 2. Topological characteristic of the nine areas. 

Thin-Thin MCI 150 0.77720 

Control 43 

Thin-Medium MCI 108 0.65454 

Control 57 

Thin-Thick MCI 56 0.51852 

Control 52 

Medium-Thin MCI 180 0.50562 

Control 176 

Medium-Medium MCI 144 0.44037 

Control 183 

Medium-Thick MCI 53 0.36552 

Control 92 

Thick-Thin MCI 166 0.46239 

Control 193 

Thick-Medium MCI 150 0.39894 

Control 226 

Thick-Thick MCI 65 0.32020 

Control 138 

5.  SIMULATION RESULTS AND ANALYSIS  

5.1 Hardware and Patients’ Results 

The software was run on a laptop running the Xubuntu (http://xubuntu.org/) Linux distribution. The laptop was 

installed with an Intel Core i5 processor with 3MB L3 cache, 2GB of RAM and a 640GB hard-disk.  

The reconstruction of a single 3D brain model requires up to 18 hours per patient while the overall size of the 

files is around 300-350MB. To analyze a patient is simple. We first calculate a set of centroids among subjects’ 

birth-death couples and project the result onto the two input axes to infer membership degrees. The same is done by 

fuzzifying the normalized hippocampus volume to its corresponding membership functions. Then, the firing strength 

for each rule is calculated and defuzzified by center of gravity. More difficult is to find a specific range where the 

SCZ patients fall, due to the necessity for more examples and the nature of schizophrenia. Generally, they interfere 

with both control and suspicious exemplars, which is why we consider them either false positives or false negatives. 
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The system can also analyze a single brain hemisphere using the same fuzzy model. One of the reasons is that 

the output risk is generally close to the average of the two hemispheres taken separately (the hippocampus volume 

refers only to one of them according to the hemisphere). However, there are some patients with a low risk on one 

hemisphere and high on the other. Such cases are not uncovered when analyzing the entire brain. Moreover, we also 

noticed that AAMI and MCI patients generally show a thinner cortex on the left hemisphere compared to the right. 

5.2 Comparing the Two Fuzzy Systems 

An early prototype of our system took only into consideration inputs related to the cortical thickness, birth and 

death from the min-max diagram [7]. The system showed a good output response but failed to recognize some of the 

patients. By adding the hippocampus in the analysis, we have now a new system with a higher accuracy which does 

not fail to recognize control and MCI/AAMI subjects, as shown in Table 3 where we present 14 subjects with their 

own information and the output of the fuzzy systems, M1 (fuzzy output without hippocampus) and M2 (fuzzy output 

with hippocampus). 

The two systems were also compared according to accuracy, balanced accuracy, sensitivity and specificity. 

Accuracy is the amount of true results among the subjects, while balanced accuracy is the arithmetic mean of 

sensitivity and specificity, which helps in avoiding inflated performance estimates on imbalanced data. Sensitivity 

and specificity of a quantitative test are dependent on the cut-off value above or below which the test is positive 

[16]. Specifically, the sensitivity refers to the ability of the test to correctly identify patients with disease. On the 

other hand, the specificity refers to the ability of the test to correctly identify patients without the disease. Positive 

predictive value (PPV) tests how likely a patient has the disease given that the test result is positive and negative 

predictive value (NPV) tests how likely the patient does not have the disease given that the test result is negative. 

The following terms are fundamental to understanding the utility of clinical tests [9]:  

1) True positive (TP)  

The patient has the disease and the test is positive. 

2) False positive (FP) 

 The patient does not have the disease but the test is positive. 

3) True negative (TN) 

 The patient does not have the disease and the test is negative. 
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4) False negative (FN) 

 The patient has the disease but the test is negative. 

Thus, the following equations are now easy to understand: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠 (𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
. (10) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
. (11) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
. (12) 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑃𝑃𝑉) =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
. (13) 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 (𝑁𝑃𝑉) =  
𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
. (14) 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
. (15) 

Sensitivity and specificity was calculated for 10 patients as shown in Table 4 in addition to another four patients 

that were used for the blind test. These four patients are correctly analyzed by the new system while the M1 system 

fails in recognizing subject four. As can be seen, there is a general improvement for the M2 system. At the present, 

excluding the SCZ, the system achieves a 100% accuracy on recognizing controls and MCI/AAMI patients. Finally 

the patients’ coordinates in 2D (birth and death) and 3D (birth, death and hippocampus volume) graphs are shown in 

Fig. 19 and Fig. 20, respectively. These graphs show that the distribution of MCI/AAMI and healthy patients are 

well-separated while the SCZ subjects’ coordinates mingle with others over the graph surface that results in a 

difficult analysis for these patients. 

Table 3. Inference results from the two fuzzy models. 

ID Gender Age Symptom M1 M2 Class 

M1 

Class 

M2 

1 F 75 MCI 0.6527 0.6527 TP TP 

2 M 86 MCI 0.6901 0.7137 TP TP 
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3 F 75 MCI 0.4122 0.6299 FN TP 

4 F 72 MCI 0.3484 0.6413 FN TP 

5 F 26 SCZ 0.5618 0.5962 FP FP 

6 F 38 SCZ 0.2154 0.2154 FN FN 

7 M 21 SCZ 0.2195 0.2195 FN FN 

8 F 67 AAMI 0.6706 0.6826 TP TP 

9 M 63 AAMI 0.6556 0.6556 TP TP 

10 F 44 Healthy 0.2827 0.2894 TN TN 

11 M 43 Healthy 0.2421 0.2421 TN TN 

12 F 19 Healthy 0.2069 0.2115 TN TN 

13 F 19 Healthy 0.2069 0.2069 TN TN 

14 M 26 Healthy 0.2387 0.2441 TN TN 

Table 4. Comparison of M1 and M2 systems. 

Classification Trials 

 M1 M2 

TN 5 5 

TP 4 6 

FP 1 1 

FN 4 2 

Total 14 14 

Accuracy 64.3% 78.6% 

Balanced 

Accuracy 

66.7% 79.2% 

Sensitivity 50.0% 75.0% 

Specificity 83.3% 83.3% 

PPV 80.0% 85.7% 

NPV 55.6% 71.4% 
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Fig. 19. X-axis refers to birth and Y-axis refers to death. Red, blue, black and green refers to MCI, AAMI, SCZ and 

control patients, respectively. 

 

Fig. 20. X-axis refers to birth, Y-axis refers to death and Z-axis refers to the hippocampus volume. Red, blue, black 

and green refers to MCI, AAMI, SCZ and control subjects, respectively. 

5.3 Attributes Analysis  

Among the AD and MCI cases the literature also reports that ventricular enlargement may be an objective and 

sensitive measure of neuropathological change associated with mild cognitive impairment and Alzheimer's disease 

[17]. There are four ventricles in the brain: the so-called lateral ventricles, left and right, and the third and fourth 

ventricles. Freesurfer, in the aseg.stats file provides volume measures for all of them, this is why we apply the 

information gain on the subjects to select important features. To recall the main concept beneath the information 

gain, let’s consider a table S containing si tuples class ci for i={1,…,m}. The information represents the expected 

amount of information required to classify any arbitrary tuples, and it is defined as follows: 

𝐼(𝑠1, 𝑠2, … , 𝑠𝑚) =  − ∑
𝑠𝑖

𝑆

𝑚

𝑖=1

log2

𝑠𝑖

𝑆
. (16) 
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Then, we define the entropy of the attribute A with range of values {a1, a2, …, av}: 

𝐸(𝐴) =  − ∑
𝑠1𝑗 + ⋯ + 𝑠𝑚𝑗

𝑆

𝑣

𝑗=1

 𝐼(𝑠1𝑗, … , 𝑠𝑚𝑗). (17) 

The information gained by branching on attribute A is defined as follows: 

𝐺𝑎𝑖𝑛(𝐴) = 𝐼(𝑠1, 𝑠2, … , 𝑠𝑚) − 𝐸(𝐴). (18) 

We aim to investigate which of the attributes (birth, death, normalized hippocampus volume, normalized first 

ventricle volume, normalized second ventricle volume, normalized third ventricle volume, normalized fourth 

ventricle volume) provides the highest amount of information. Table 5 shows the list of subjects taken in 

examination with their brain volumes measures. The “S?” column reflects the output of our system. “Y” means 

output > 0.6 while “N” means  0.6. The first step is to apply the generalization which consists in joining the values 

in ranges as shown in Table 6. At this point we calculated the information gain for every attribute and Table 7 shows 

the ordered gains. The second ventricle, according to our generalization, carries a higher amount of information than 

death and hippocampus, which means that it is an important attribute in terms of characterization of the patient. The 

listed order, however, reflected our good choice in terms of input of the fuzzy system since our inputs were in the 

top 4 of the most important attributes. 

Table 5. Information gain. 

ID Birth Death HN 1VN 2VN 3VN 4VN S? 

A1 2.1399 3.2506 0.0049 0.0087 0.0096 0.0014 0.0016 Y 

A2 2.1473 3.1794 0.0037 0.0145 0.0116 0.0008 0.0017 Y 

A3 2.2251 3.5540 0.0040 0.0211 0.0209 0.0021 0.0015 Y 

A4 2.2440 3.3936 0.0051 0.0071 0.0069 0.0005 0.0006 Y 

A5 2.4417 3.6072 0.0051 0.0127 0.0207 0.0009 0.0012 N 

A6 2.5294 3.6990 0.0072 0.0038 0.0031 0.0007 0.0016 N 

A7 2.1721 3.2175 0.0043 0.0103 0.0115 0.0013 0.0011 Y 

A8 2.0690 3.2449 0.0052 0.0062 0.0070 0.0008 0.0013 Y 

A9 2.3936 3.4873 0.0064 0.0056 0.0058 0.0005 0.0007 N 

A10 2.4212 3.5670 0.0050 0.0139 0.0125 0.0004 0.0009 N 

Table 6. Generalized information gain. 

ID Birth Death HN 1VN 2VN 3DN 4VN S? 
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A1 ≤2.15 3.25… 

3.50 

medium medium medium high high Y 

A2 ≤2.15 ≤3.25 low high medium medium high Y 

A3 2.15… 

2.25 

≥3.5 low high high high medium Y 

A4 2.15… 

2.25 

3.25… 

3.50 

high medium low low low Y 

A5 ≥2.25 ≥3.5 medium medium high medium medium N 

A6 ≥2.25 ≥3.5 high low low medium high N 

A7 2.15… 

2.25 

≤3.25 low medium medium high medium Y 

A8 ≤2.15 ≤3.25 medium low medium medium medium Y 

A9 ≥2.25 3.25… 

3.50 

high low low low low N 

A10 ≥2.25 ≥3.5 high high high low low N 

Table 7. Ordered gains. 

Gains in order 

Gain (birth) 0.9709506 

Gain (2nd ventricle) 0.4199731 

Gain (death) 0.3709506 

Gain (hippocampus) 0.2954618 

Gain (3rd ventricle) 0.2954618 

Gain (1st ventricle) 0.0954618 

Gain (4th ventricle) 0.0954618 

 6. CONCLUSIONS 

Alzheimer’s disease constitutes one of the major problems in modern society where it impacts a high percentage 

in the elderly population. In Taiwan, statistics from the Ministry of Health and Welfare, Taiwan, estimated that 

Taiwan will become an aged society in 2018 [18]. To systematically assess AD at an early stage, a fuzzy system is 

proposed that infers reliable biomarkers in assisting physician’s clinical diagnosis. The possibility to analyze the 

hippocampus volumes as the third input of the fuzzy systems, we can discriminate between control and AAMI/MCI 

subjects. Moreover, adding hippocampus volume as the third input to the proposed fuzzy systems reduced the 

number of false positive among the analyzed participants. Experiment results verified that the proposed fuzzy 

models were effective in discriminating the dementia risk of control to AAMI/MCI subjects. 
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Future work involves using the brain ventricles in a more comprehensive study to delineate the most noticeable 

changes in brain structure. For example, preliminary data show the second ventricle carries a high amount of 

information may be an important factor in the model. Besides, reducing the time complexity to obtain the dementia 

risk of a subject is also worth addressing. Finally, this study was limited the small sample size. Future studies should 

attempt to include larger samples.  
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