Skip to main content
Log in

Image Steganography Using Fuzzy Logic and Chaotic for Large Payload and High Imperceptibility

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Information security is one of the most important processes and methodologies which have to be considered when any information is communicated secretly between two parties. Cryptography and steganography are the two important practices used for this purpose. Cryptography changes the secret message into unintelligible text; however, it reveals the existence of the secret message. Steganography technique on the other hand hides the secret message such that no one can notice the presence of it. Current paper presents an image steganographic technique exploiting fuzzy logic edge detection and chaotic method. The fuzzy logic approach for image processing allows defining the degree to which a pixel belongs to an edge. Least significant bit substitution approach is used for data hiding in the carrier image. The combination of chaotic theory with steganography is emerging and gets attracted by researchers. Chaotic method is applied to the original message to generate the random sequence of binary equivalent secret message which prevents the secret message from attackers. The proposed method hides large amount of data with good quality of stage image of the human visual system and guarantees the confidentiality in the communication. The experimental results shows better peak signal-to-noise ratio, image quality index and payload for evaluating the stego image compared to the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking and Steganography. Morgan Kaufmann Publishers, Burlington (2007)

    Google Scholar 

  2. Johnson, N.F., Duric, Z., Jajodia, S., Memon, N.: Information hiding: steganography and watermarking—attacks and counter measures. J. Electron. Imaging 10, 825–826 (2001)

    Article  Google Scholar 

  3. Ziou, D., Reza, J.: Efficient steganalysis of images: learning is good for anticipation. Pattern Anal. Appl. 17, 279–289 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, R.-Z., Lin, C.-F., Lin, J.-C.: Hiding data in images by optimal moderately significant-bit replacement. IEEE Electron. Lett. 36, 2069–2070 (2000)

    Article  MathSciNet  Google Scholar 

  5. Pareek, N.K., Vinod, P., Sud, K.K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24, 926–934 (2006)

    Article  Google Scholar 

  6. Dachselt, F., Schwarz, W.: Chaos and cryptography. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48, 1498–1501 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ornstein, D.S., Weiss, B.: Statistical properties of chaotic systems. Bull. Am. Math. Soc. 24, 11–116 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Parker, S., Chua, L.O.: Chaos a tutorial for engineers. Proc. IEEE. 75, 982–1008 (1995)

    Article  Google Scholar 

  9. Bandyopadhyay, D., Dasgupta, K., Mandal, J.K., Dutta, P.: A novel secure image steganography method based on chaos theory in spatial domain. Int. J. Secur. Priv. Trust Manag. (IJSPTM) 3, 11–22 (2014)

    Article  Google Scholar 

  10. Wu, W., Rulkov, N.F.: Studying chaos via 1-D maps—a tutorial. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40, 707–721 (1993)

    Article  MATH  Google Scholar 

  11. Guan, Z.H., Huang, F., Guan, W.: Chaos-based image encryption algorithm. Phys. Lett. 346, 153–157 (2005)

    Article  MATH  Google Scholar 

  12. Yang, C.Y., Zhang, Q.L., Zhou, L.N.: Lur’e Lyapunov functions and absolute stability criteria for Lur’e systems with multiple nonlinearities. Int. J. Robust Nonlinear Control 17, 829–841 (2007)

    Article  MATH  Google Scholar 

  13. Wang, X.-Y., Sheng-Xian, G.: New chaotic encryption algorithm based on chaotic sequence and plain text. IET Inf. Secur. 8, 213–216 (2014)

    Article  Google Scholar 

  14. Kanopoulos, N., Vasanthavada, N., Baker, R.L.: Design of an image edge detection filter using the Sobel operator. IEEE J. Solid State Circuits 23, 358–367 (1988)

    Article  Google Scholar 

  15. Bassil, Y.: Image steganography based on a parameterized canny edge detection algorithm. arXiv preprint arXiv:1212.6259 (2012)

  16. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  17. Moghaddamzadeh, A., Bourbaki, N.: A fuzzy region growing approach for segmentation of color images. Pattern Recogn. 30, 867–881 (1997)

    Article  Google Scholar 

  18. El-Khamy, S.E., Lotfy, M., El-Yamany, N.: A modified fuzzy Sobel edge detector. In: Radio Science Conference, pp. C32-1. IEEE (2000)

  19. Zhao, M., Fu, A.M., Yan, H.: A technique of three-level thresholding based on probability partition and fuzzy 3-partition. IEEE Trans. Fuzzy Syst. 9, 469–479 (2001)

    Article  Google Scholar 

  20. Russo, F., Ramponi, G.: Edge extraction by FIRE operators. In: Proceedings of the Third IEEE Conference on Fuzzy Systems. IEEE World Congress on Computational Intelligence, pp. 249–253. (1994)

  21. Aborisade, D.O.: Novel fuzzy logic based edge detection technique. Int. J. Adv. Sci. Technol. 29, 75–82 (2011)

    Google Scholar 

  22. See, J., Madasu, H., Shantaram, V.: Fuzzy-based parameterized gaussian edge detector using global and local properties. In: International Conference on Information Technology: Coding and Computing, ITCC, vol. 2. IEEE (2005)

  23. Kaur, E.K., Mutenja, V., Gill, E.I.S.: Fuzzy logic based image edge detection algorithm in MATLAB. Int. J. Comput. Appl. 22, 55–58 (2010)

    Google Scholar 

  24. Amarunnishad, T.M., Govindan, V.K., Mathew, T.: Improving BTC image compression using a fuzzy complement edge operator. Sig. Process. 88, 2989–2997 (2008)

    Article  MATH  Google Scholar 

  25. http://in.mathworks.com

  26. Chen, W.J., Chang, C.C., Le, T.H.: High payload steganography mechanism using hybrid edge detector. Expert Syst. Appl. 37, 3292–3301 (2010)

    Article  Google Scholar 

  27. Yu, J.G., Yoon, E.J., Shin, S.H., Yoo, K.Y.: A new image steganography based on 2 k correction and edge-detection. In: Information Technology: New Generations, pp. 563–568. IEEE (2008)

  28. Sun, S.: A novel edge based image steganography with 2 k correction and Huffman encoding. Inf. Process. Lett. 116, 93–99 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, Z.: A universal image quality index. IEEE Signal Process. Lett. 9, 81–84 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Vanmathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanmathi, C., Prabu, S. Image Steganography Using Fuzzy Logic and Chaotic for Large Payload and High Imperceptibility. Int. J. Fuzzy Syst. 20, 460–473 (2018). https://doi.org/10.1007/s40815-017-0420-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0420-0

Keywords

Navigation