Skip to main content
Log in

Evaluation of the Human Settlement in Lhasa with Intuitionistic Fuzzy Analytic Hierarchy Process

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The human settlement (HS) is a significant issue that concerns everyone’s daily life and work. With the development of urbanization and industrialization, urban HS is confronted with a good many severe problems. However, the deficiency of a scientific assessment of the HS may lead to an inadequate awareness of the development statuses and characteristics of the HSs in different regions and within a single region, which is detrimental to the sustainability of the HS. Thus, it is necessary to assess the HS, and this paper aims to enhance and encourage the sustainable development (SD) of the HS through the effective evaluation of the HS in Lhasa. Firstly, we review the existing literature on the HS. Secondly, based on our understanding of the regional characteristics of Lhasa and the connotation of the HS, we construct an evaluation index system. Again, according to the fuzziness and uncertainty of the HS itself, and the advantages of the intuitionistic fuzzy analytic hierarchy process (IFAHP) in accurately describing pairwise comparison judgments of the decision makers (DMs), we use the IFAHP to evaluate the HS in Lhasa in terms of ecological environment, residential environment, and economic and social environment, based on which we give some suggestions to promote the SD of the HS and conclude that the IFAHP can express the opinions of the DMs comprehensively and is immensely helpful for the evaluation of the HS in Lhasa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. http://habitat3.org/the-new-urban-agenda/. Accessed 9 April 2017

  2. Huang, L., Yan, L.J., Wu, J.G.: Assessing urban sustainability of Chinese megacities: 35 years after the economic reform and open-door policy. Landsc. Urban Plan. 145, 57–70 (2016)

    Article  Google Scholar 

  3. Doxiadis, C.A.: Ekistics, the science of human settlements. Science 170(3956), 393–404 (1970)

    Article  Google Scholar 

  4. Polat, H.E., Olgun, M.: Analysis of the rural dwellings at new residential areas in the Southeastern Anatolia, Turkey. Build. Environ. 39(12), 1505–1515 (2004)

    Article  Google Scholar 

  5. Gueguen, L., Koenig, J.D., Reeder, C., Barksdale, T., Saints, J., Stamatiou, K., et al.: Mapping human settlements and population at country scale from VHR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(2), 524–538 (2017)

    Article  Google Scholar 

  6. Baiocchi, G., Creutzig, F., Minx, J., Pichler, P.: A spatial typology of human settlements and their CO2 emissions in England. Glob. Environ. Change 34, 13–21 (2015)

    Article  Google Scholar 

  7. Li, W.M., Ye, X.Y., Sun, Y.: The assessment of urban human settlement: a case study of Hangzhou. Econ. Geogr. 19(2), 38–43 (1999)

    Google Scholar 

  8. Ning, Y.M., Zha, Z.Q.: The study of evaluation and optimization for human settlement in the metropolitan areas: take Shanghai for example. City Plann. Rev. 23(6), 15–20 (1999)

    Google Scholar 

  9. Chen, F., Chen, H.Y., Zhu, Z.H., Peng, B.Z.: Analysis on evaluation of urban residential quality and satisfaction. Hum. Geogr. 15(4), 20–23 (2000)

    Google Scholar 

  10. Zhang, W.X., Wang, R.: Analysis on the current situation of urban human settlement environment in China. Urban Dev. Stud. 14(2), 115–120 (2007)

    Google Scholar 

  11. Li, M., Li, X.M.: Application research on quality evaluation of urban human settlements based on the BP neural network improved by GA. Econ. Geogr. 27(1), 101–105 (2007)

    Google Scholar 

  12. Chu, D., Zhang, Y.L., Bianba, C., Liu, L.S.: Land use dynamics in Lhasa area, Tibetan Plateau. J. Geog. Sci. 20(6), 899–912 (2010)

    Article  Google Scholar 

  13. Yang, J., Zhou, J.X., Ke, Y.Z., Xiao, J.M.: Assessing the structure and stability of street trees in Lhasa, China. Urban For. Urban Green. 11(4), 432–438 (2012)

    Article  Google Scholar 

  14. Bai, L., Cirendunzhu, D., Pengcuociren, D., Dawa, D., Woodward, A., Liu, X., et al.: Rapid warming in Tibet, China: public perception, response and coping resources in urban Lhasa. Environ. Health 12(1), 71 (2013)

    Article  Google Scholar 

  15. Wu, M.Y., Pearce, P.L.: Tourists to Lhasa, Tibet: how local youth classify, understand and respond to different types of travelers. Asia Pac. J. Tour. Res. 18(6), 549–572 (2013)

    Article  Google Scholar 

  16. Liu, S., Liu, B.Y.: Study on evaluation system of sustainable development for urban human settlement. Urban Plan. Forum 5, 35–37 (1999)

    Google Scholar 

  17. Wu, Z.Q., Wei, F.: Sustainable Development China Habitat Environment Evaluation System. Science Press, Beijing (2004)

    Google Scholar 

  18. Mani, M., Varghese, K., Ganesh, L.S.: Integrated model framework to simulate sustainability of human settlements. J. Urban Plan. Dev. 131(3), 147–158 (2005)

    Article  Google Scholar 

  19. Zheng, D.F., Zhang, Y., Zang, Z., Sun, C.Z.: Empirical research on carrying capacity of human settlements system in Dalian City, Liaoning Province, China. Chin. Geogra. Sci. 25(2), 237–249 (2015)

    Article  Google Scholar 

  20. Xu, Z.S., Liao, H.C.: Intuitionistic fuzzy analytic hierarchy process. IEEE Trans. Fuzzy Syst. 22(4), 749–761 (2014)

    Article  Google Scholar 

  21. Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15(3), 234–281 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63(2), 81–97 (1956)

    Article  Google Scholar 

  23. Ren, P.J., Xu, Z.S., Gu, J.: Assessments of the effectiveness of an earthquake emergency plan implementation with hesitant analytic hierarchy process. Int. J. Inf. Technol. Decis. Mak. 15(6), 1367–1389 (2016)

    Article  Google Scholar 

  24. Yoon, H.H.G.: Global concerns on human settlement and cross-cutting issues in living environments. Indoor Built Environ. 23(5), 625–628 (2014)

    Article  Google Scholar 

  25. Wu, L.Y.: Introduction to Sciences of Human Settlements. China Architecture & Building Press, Beijing (2001)

    Google Scholar 

  26. Ministry of Housing and Urban-Rural Construction of the People’s Republic of China. Evaluation index system of China habitat award, 2016. http://www.mohurd.gov.cn/wjfb/201605/t20160530_227652.html. Accessed 1 April 2017

  27. World Commission on Environment and Development (WCED): Our Common Future. Oxford University Press, Oxford (1987)

    Google Scholar 

  28. Alberti, M.: Measuring urban sustainability. Environ. Impact Assess. Rev. 16(4), 381–424 (1996)

    Article  Google Scholar 

  29. Wu, J.G.: Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landscape Ecol. 28(6), 999–1023 (2013)

    Article  Google Scholar 

  30. http://www.xzxw.com/xw/201706/t20170605_1833535.html. Accessed 1 April 2017

  31. Bolund, P., Hunhammar, S.: Ecosystem services in urban areas. Ecol. Econ. 29(2), 293–301 (1999)

    Article  Google Scholar 

  32. Seburanga, J.L., Kaplin, B.A., Zhang, Q.X., Gatesire, T.: Amenity trees and green space structure in urban settlements of Kigali, Rwanda. Urban For. Urban Green. 13(1), 84–93 (2014)

    Article  Google Scholar 

  33. https://en.wikipedia.org/wiki/Road_traffic_safety. Accessed 4 April 2017

  34. United Nations Development Programme (UNDP): Human Development Report. Oxford University Press, New York (1990)

    Google Scholar 

  35. Zheng, G.C.: Social Security Study: Theory, System, Practice and Speculation. The Commercial Press, Beijing (2000)

    Google Scholar 

  36. Mitchell, H.B.: A correlation coefficient for intuitionistic fuzzy sets. Int. J. Intell. Syst. 19(5), 483–490 (2004)

    Article  MATH  Google Scholar 

  37. Leung, L.C., Cao, D.: On consistency and ranking of alternatives in fuzzy AHP. Eur. J. Oper. Res. 124(1), 102–113 (2000)

    Article  MATH  Google Scholar 

  38. Xu, Z.S.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15(6), 1179–1187 (2007)

    Article  Google Scholar 

  39. Xu, Z.S., Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen Syst 35(4), 417–433 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MATH  Google Scholar 

  41. Xu, Z.S., Cai, X.Q.: Intuitionistic Fuzzy Information: Aggregation Theory and Applications. Springer, New York (2012)

    Book  MATH  Google Scholar 

  42. Xu, Z.S.: Intuitionistic Fuzzy Preference Modeling and Interactive Decision Making. Springer, New York (2013)

    Google Scholar 

  43. Atanassov, K.T.: On Intuitionistic Fuzzy Sets Theory. Springer, New York (2012)

    Book  MATH  Google Scholar 

  44. Xu, Z.S.: Intuitionistic preference relation and their application in group decision making. Inf. Sci. 177(11), 2363–2379 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tanino, T.: Fuzzy preference orderings in group decision making. Fuzzy Sets Syst. 12(2), 117–131 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  46. Chiclana, F., Viedma, E.H., Alonso, S., Herrera, F.: Cardinal consistency of reciprocal preference relations: a characterization of multiplicative transitivity. IEEE Trans. Fuzzy Syst. 17(1), 14–23 (2009)

    Article  Google Scholar 

  47. Xia, M.M., Xu, Z.S.: On consensus in group decision making based on fuzzy preference relations. Stud. Fuzziness Soft Comput. 267, 263–287 (2011)

    Article  Google Scholar 

  48. Xu, Z.S., Cai, X.Q., Szmidt, E.: Algorithms for estimating missing elements of incomplete intuitionistic preference relations. Int. J. Intell. Syst. 26(9), 787–813 (2011)

    Article  Google Scholar 

  49. Saaty, T.L.: Axiomatic foundation of the analytic hierarchy process. Manage. Sci. 32(7), 841–855 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  50. Szmidt, E., Kacprzyk, J.: Ranking of intuitionistic fuzzy alternatives in a multi-criteria decision making problem. Presented at the 28th North American Fuzzy Information Processing Society Annual Conference, Cincinnati, OH, June 14–17, 2009

  51. Xu, Z.S.: Intuitionistic fuzzy multiattribute decision making: an interactive method. IEEE Trans. Fuzzy Syst. 20(3), 514–525 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (Nos. 71571123, 71771155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeshui Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xu, Z. Evaluation of the Human Settlement in Lhasa with Intuitionistic Fuzzy Analytic Hierarchy Process. Int. J. Fuzzy Syst. 20, 29–44 (2018). https://doi.org/10.1007/s40815-017-0422-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0422-y

Keywords

Navigation