Skip to main content

Advertisement

Log in

Dual-Tree Complex Wavelet Transform-Based Features for Automated Alcoholism Identification

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

A novel automated system for the identification of alcoholic subjects using electroencephalography (EEG) signals is proposed in this study. The proposed system employed dual-tree complex wavelet transform (DTCWT)-based features and sequential minimal optimization support vector machine (SMO-SVM), least square support vector machine (LS-SVM), and fuzzy Sugeno classifiers (FSC) for the automated identification of alcoholic EEG signals. The EEG signals are decomposed into several sub-bands (SBs) using DTCWT. The features extracted from DTCWT-based SBs are fed to FSC, SMO-SVM, and LS-SVM classifiers to evaluate the best performing classifier. The tenfold cross-validation scheme is used to mitigate the overfitting of the model. We have obtained the highest classification accuracy (CAC) of 97.91%, the area under receiver operating characteristic curve (AU-ROC) of 0.999 and Matthews correlation coefficient (MCC) of 0.958 for our proposed alcoholic diagnosis model. Our alcoholism detection system performed better than the existing systems in terms of all three measures: CAC, AU-ROC, and MCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alchohol use disorder. http://www.mayoclinic.org/diseases-conditions/alcohol-use-disorder/basics/definition/con-20020866?reDate=29052017. Accessed 29 May 2017

  2. Abdelnour, A.F., Selesnick, I.W.: Nearly symmetric orthogonal wavelet bases. In: Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP), vol. 6 (2001)

  3. Abdelnour, A.F., Selesnick, I.W.: Symmetric nearly orthogonal and orthogonal nearly symmetric wavelets. Arab. J. Sci. Eng. 29(2), 3–16 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Acharya, U.R., Bhat, P.S., Iyengar, S., Rao, A., Dua, S.: Classification of heart rate data using artificial neural network and fuzzy equivalence relation. Pattern Recognit. 36(1), 61–68 (2003). https://doi.org/10.1016/S0031-3203(02)00063-8

    Article  MATH  Google Scholar 

  5. Acharya, U.R., Bhat, S., Adeli, H., Adeli, A., et al.: Computer-aided diagnosis of alcoholism-related EEG signals. Epilepsy Behav. 41, 257–263 (2014)

    Article  Google Scholar 

  6. Acharya, U.R., Fujita, H., Sudarshan, V.K., Bhat, S., Koh, J.E.: Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowl. Based Syst. 88, 85–96 (2015)

    Article  Google Scholar 

  7. Acharya, U.R., Mookiah, M.R.K., Koh, J.E., Tan, J.H., Bhandary, S.V., Rao, A.K., Hagiwara, Y., Chua, C.K., Laude, A.: Automated diabetic macular edema (dme) grading system using dwt, dct features and maculopathy index. Comput. Biol. Med. 84, 59–68 (2017)

    Article  Google Scholar 

  8. Acharya, U.R., Ng, E., Eugene, L.W.J., Noronha, K.P., Min, L.C., Nayak, K.P., Bhandary, S.V.: Decision support system for the glaucoma using Gabor transformation. Biomed. Signal Process. Control 15, 18–26 (2015)

    Article  Google Scholar 

  9. Acharya, U.R., Sree, S.V., Chattopadhyay, S., Suri, J.S.: Automated diagnosis of normal and alcoholic EEG signals. Int. J. Neural Syst. 22(03), 1250,011 (2012)

    Article  Google Scholar 

  10. Acharya, U.R., Sree, S.V., Krishnan, M.M.R., Molinari, F., Saba, L., Ho, S.Y.S., Ahuja, A.T., Ho, S.C., Nicolaides, A., Suri, J.S.: Atherosclerotic risk stratification strategy for carotid arteries using texture-based features. Ultrasound Med. Biol. 38(6), 899–915 (2012)

    Article  Google Scholar 

  11. Acharya, U.R., Sree, S.V., Swapna, G., Martis, R.J., Suri, J.S.: Automated EEG analysis of epilepsy: a review. Knowl. Based Syst. 45, 147–165 (2013)

    Article  Google Scholar 

  12. Acharya, U.R., Yanti, R., Zheng, J.W., Krishnan, M.M.R., Tan, J.H., Martis, R.J., Lim, C.M.: Automated diagnosis of epilepsy using CWT, hos and texture parameters. Int. J. Neural Syst. 23(03), 1350009 (2013).

    Article  Google Scholar 

  13. Amo, Ad, Montero, J., Biging, G., Cutello, V.: Fuzzy classification systems. Eur. J. Oper. Res. 156(2), 495–507 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer, Norwell (1981)

    Book  MATH  Google Scholar 

  15. Bhat, S., Acharya, U.R., Adeli, H., Bairy, G.M., Adeli, A.: Automated diagnosis of autism: in search of a mathematical marker. Rev. Neurosci. 25(6), 851–861 (2014)

    Google Scholar 

  16. Bhat, S., Acharya, U.R., Dadmehr, N., Adeli, H.: Clinical neurophysiological and automated EEG-based diagnosis of the Alzheimer’s disease. Eur. Neurol. 74(3–4), 202–210 (2015)

    Article  Google Scholar 

  17. Bhati, D., Sharma, M., Pachori, R.B., Gadre, V.M.: Time-frequency localized three-band biorthogonal wavelet filter bank using semidefinite relaxation and nonlinear least squares with epileptic seizure EEG signal classification. Digit. Signal Proc. 62, 259–273 (2017)

    Article  Google Scholar 

  18. Bhattacharyya, A., Sharma, M., Pachori, R.B., Sircar, P., Acharya, U.R.: A novel approach for automated detection of focal EEG signals using empirical wavelet transform. Neural Computing and Applications, pp. 1–11 (2016)

  19. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM (1992)

  20. Cherpitel, C.J.: Alcohol and injuries: emergency department studies in an international perspective. World Health Organization (2009)

  21. Chiu, S.L.: Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Syst. 2(3), 267–278 (1994). http://dl.acm.org/citation.cfm?id=2656634.2656640

  22. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University press, Cambridge (2000)

    Book  MATH  Google Scholar 

  23. Druesne-Pecollo, N., Tehard, B., Mallet, Y., Gerber, M., Norat, T., Hercberg, S., Latino-Martel, P.: Alcohol and genetic polymorphisms: effect on risk of alcohol-related cancer. Lancet Oncol. 10(2), 173–180 (2009)

    Article  Google Scholar 

  24. EEG database data set. https://archive.ics.uci.edu/ml/datasets/eeg+database. Accessed 29 May 2017

  25. Ehlers, C.L., Havstad, J., Prichard, D., Theiler, J.: Low doses of ethanol reduce evidence for nonlinear structure in brain activity. J. Neurosci. 18(18), 7474–7486 (1998)

    Google Scholar 

  26. Ethem, A.: Introduction to Machine Learning (Adaptive Computation and Machine Learning). MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  27. Faust, O., Acharya, R., Allen, A.R., Lin, C.: Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques. IRBM 29(1), 44–52 (2008)

    Article  Google Scholar 

  28. Faust, O., Acharya, U.R., Adeli, H., Adeli, A.: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 26, 56–64 (2015)

    Article  Google Scholar 

  29. Faust, O., Yanti, R., Yu, W.: Automated detection of alcohol related changes in electroencephalograph signals. J. Med. Imaging Health Inform. 3(2), 333–339 (2013)

    Article  Google Scholar 

  30. Faust, O., Yu, W., Kadri, N.A.: Computer-based identification of normal and alcoholic EEG signals using wavelet packets and energy measures. J. Mech. Med. Biol. 13(03), 1350,033 (2013)

    Article  Google Scholar 

  31. Fleming, M.F.: Strategies to increase alcohol screening in health care settings. Alcohol Res. Health 21(4), 340 (1997)

    Google Scholar 

  32. Giancola, P.R., Moss, H.B.: Executive cognitive functioning in alcohol use disorders. In: Recent developments in alcoholism, pp. 227–251. Springer (1998)

  33. Guze, S.B.: Diagnostic and statistical manual of mental disorders, (DSM-IV). Am. J. Psychiatry 152(8), 1228–1228 (1995)

    Article  Google Scholar 

  34. Inoue, T., Abe, S.: Fuzzy support vector machines for pattern classification. In: Proceedings of International Joint Conference on Neural Networks, 2001. IJCNN’01, vol. 2, pp. 1449–1454 (2001). https://doi.org/10.1109/IJCNN.2001.939575

  35. Ishibuchi, H., Nakaskima, T.: Improving the performance of fuzzy classifier systems for pattern classification problems with continuous attributes. IEEE Trans. Ind. Electron. 46(6), 1057–1068 (1999). https://doi.org/10.1109/41.807986

    Article  Google Scholar 

  36. Kailath, T.: The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 15(1), 52–60 (1967)

    Article  Google Scholar 

  37. Kannathal, N., Acharya, U.R., Lim, C.M., Sadasivan, P.: Characterization of EEG—a comparative study. Comput. Methods Programs Biomed. 80(1), 17–23 (2005)

    Article  Google Scholar 

  38. Kingsbury, N.: A dual-tree complex wavelet transform with improved orthogonality and symmetry properties. In: Proceedings of International Conference on Image Processing, vol. 2, pp. 375–378. IEEE (2000)

  39. Kreinovich, V., Quintana, C., Reznik, L.: Gaussian membership functions are most adequate in representing uncertainty in... In: Proceedings of NAFIPS’92: North American Fuzzy Information Processing Society Conference, Puerto Vallarta, pp. 618–624 (1992)

  40. Lim, S.S., Vos, T., Flaxman, A.D., Danaei, G., Shibuya, K., Adair-Rohani, H., AlMazroa, M.A., Amann, M., Anderson, H.R., Andrews, K.G., et al.: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. The Lancet 380(9859), 2224–2260 (2013)

    Article  Google Scholar 

  41. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, Cambridge (1999)

    MATH  Google Scholar 

  42. Mitchell, T.M.: Machine learning, 1st edn. McGraw-Hill, Inc., New York, NY (1997)

    MATH  Google Scholar 

  43. Organization, W.H.: Global Status Report on Alcohol and Health 2014. World Health Organization, Geneva (2014)

    Google Scholar 

  44. Organization, W.H., et al.: Global Status Report on Alcohol 2004 (2004)

  45. Patidar, S., Pachori, R.B., Upadhyay, A., Acharya, U.R.: An integrated alcoholic index using tunable-Q wavelet transform based features extracted from eeg signals for diagnosis of alcoholism. Appl. Soft Comput. 50, 71–78 (2017)

    Article  Google Scholar 

  46. Porjesz, B., Begleiter, H.: Alcoholism and human electrophysiology. Alcohol Res. Health 27(2), 153–160 (2003)

    Google Scholar 

  47. Rangaswamy, M., Porjesz, B., Chorlian, D.B., Choi, K., Jones, K.A., Wang, K., Rohrbaugh, J., O’Connor, S., Kuperman, S., Reich, T., et al.: Theta power in the eeg of alcoholics. Alcohol. Clin. Exp. Res. 27(4), 607–615 (2003)

    Article  Google Scholar 

  48. Rangaswamy, M., Porjesz, B., Chorlian, D.B., Wang, K., Jones, K.A., Bauer, L.O., Rohrbaugh, J., Oconnor, S.J., Kuperman, S., Reich, T., et al.: Beta power in the EEG of alcoholics. Biol. Psychiatry 52(8), 831–842 (2002)

    Article  Google Scholar 

  49. Repovš, G.: Dealing with noise in EEG recording and data analysis. Inform. Med. Slov. 15, 18–25 (2010)

    Google Scholar 

  50. Rumpf, H.J., Hapke, U., Meyer, C., John, U.: Screening for alcohol use disorders and at-risk drinking in the general population: psychometric performance of three questionnaires. Alcohol Alcohol. 37(3), 261–268 (2002)

    Article  Google Scholar 

  51. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.C.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)

    Article  Google Scholar 

  52. Sharma, M., Bhati, D., Pillai, S., Pachori, R.B., Gadre, V.M.: Design of time–frequency localized filter banks: transforming non-convex problem into convex via semidefinite relaxation technique. Circuits Syst. Signal Process. 35(10), 3716–3733 (2016)

    Article  MathSciNet  Google Scholar 

  53. Sharma, M., Deb, D., Acharya, U.R.: A novel three-band orthogonal wavelet filter bank method for an automated identification of alcoholic EEG signals. Appl. Intell. (2017). https://doi.org/10.1007/s10489-017-1042-9

    Google Scholar 

  54. Sharma, M., Dhere, A., Pachori, R.B., Acharya, U.R.: An automatic detection of focal EEG signals using new class of time-frequency localized orthogonal wavelet filter banks. Knowl. Based Syst. 118, 217–227 (2017)

    Article  Google Scholar 

  55. Sharma, M., Dhere, A., Pachori, R.B., Gadre, V.M.: Optimal duration-bandwidth localized antisymmetric biorthogonal wavelet filters. Sig. Process. 134, 87–99 (2017)

    Article  Google Scholar 

  56. Sharma, M., Gadre, V.M., Porwal, S.: An eigenfilter-based approach to the design of time–frequency localization optimized two-channel linear phase biorthogonal filter banks. Circuits Syst. Signal Process. 34(3), 931–959 (2015)

    Article  Google Scholar 

  57. Sharma, M., Kolte, R., Patwardhan, P., Gadre, V.: Time-frequency localization optimized biorthogonal wavelets. In: International Conference on Signal Processing, Communications (SPCOM), pp. 1–5 (2010)

  58. Sharma, M., Pachori, R.B.: A novel approach to detect epileptic seizures using a combination of tunable-Q wavelet transform and fractal dimension. J. Mech. Med. Biol. (2017). https://doi.org/10.1142/S0219519417400036

    Google Scholar 

  59. Sharma, M., Pachori, R.B., Acharya, U.R.: A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recognit. Lett. 94, 172–179 (2017). https://doi.org/10.1016/j.patrec.2017.03.023

    Article  Google Scholar 

  60. Sharma, M., Vanmali, A.V., Gadre, V.M.: Wavelets and Fractals in Earth System Sciences, chap. Construction of Wavelets. CRC Press, Boca Raton (2013)

    Google Scholar 

  61. Suykens, J., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999). https://doi.org/10.1023/A:1018628609742

    Article  MATH  Google Scholar 

  62. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  MATH  Google Scholar 

  63. Tcheslavski, G.V., Gonen, F.F.: Alcoholism-related alterations in spectrum, coherence, and phase synchrony of topical electroencephalogram. Comput. Biol. Med. 42(4), 394–401 (2012)

    Article  Google Scholar 

  64. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (2000). https://doi.org/10.1007/978-1-4757-3264-1

    Book  MATH  Google Scholar 

  65. What is an alcoholic? how to treat alcoholism. http://www.medicalnewstoday.com/articles/157163.php. Accessed 29 May 2017

  66. Zhang, X.L., Begleiter, H., Porjesz, B., Wang, W., Litke, A.: Event related potentials during object recognition tasks. Brain Res. Bull. 38(6), 531–538 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Sharma, P., Pachori, R.B. et al. Dual-Tree Complex Wavelet Transform-Based Features for Automated Alcoholism Identification. Int. J. Fuzzy Syst. 20, 1297–1308 (2018). https://doi.org/10.1007/s40815-018-0455-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0455-x

Keywords

Navigation