Skip to main content
Log in

Multiobjective Optimization Control for Uncertain Nonlinear Stochastic System with State-Delay

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper is concerned with the problem of multiobjective \(H_{2}/H_{\infty }\) control for uncertain nonlinear stochastic systems with state-delay. The main aim is to get the multiobjective \(H_{2}/H_{\infty }\) optimization performance in Pareto optimal sense. By applying T–S fuzzy approach, the multiobjective \(H_{2}/H_{\infty }\) fuzzy control problem is transformed into linear matrix inequality (LMI)-constrained multiobjective problem (MOP). In addition, we efficiently solve Pareto optimal solutions for the MOP of fuzzy control design problem by employing LMI-based multiobjective evolution algorithm. The designers can freely select multiobjective \(H_{2}/H_{\infty }\) control scheme according to their own preferences. Finally, a financial system example is given to illustrate the effectiveness and usefulness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Xu, S., Lam, J.: On equivalence and efficiency of certain stability criteria for time-delay systems. IEEE Trans. Autom. Control 52(1), 95–101 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Xie, X., Duan, N., Zhao, C.: A combined homogeneous domination and sign function approach to output-feedback stabilization of stochastic high-order nonlinear systems. IEEE Trans. Autom. Control 59(5), 1303–1309 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Shen, H., Li, F., Xu, S., Sreeram, V.: Slow state variables feedback stabilization for semi-markov jump systems with singular perturbations. IEEE Trans. Autom. Control (2017). https://doi.org/10.1109/TAC.2017.2774006

  4. Chen, G., Xia, J., Zhuang, G.: Improved passivity analysis for neural networks with Markovian jumping parameters and interval time-varying delays. Neurocomputing 155(1), 253–260 (2015)

    Article  Google Scholar 

  5. Xia, J., Chen, G., Sun, W.: Extended dissipative analysis of generalized Markovian switching neural networks with two delay components. Neurocomputing 260, 275–283 (2017)

    Article  Google Scholar 

  6. Chen, G., Xia, J., Zhuang, G., Zhang, B.: l2 gain analysis and state feedback stabilization of switched systems with multiple additive time-varying delays. J. Frankl. Inst. 354, 7326–7345 (2017)

    Article  MATH  Google Scholar 

  7. Chen, G., Xia, J., Zhuang, G., Zhao, J.: Improved delay-dependent stabilization for a class of networked control systems with nonlinear perturbations and two delay components. Appl. Math. Comput. 316(1), 1–17 (2018)

    Article  MathSciNet  Google Scholar 

  8. Wang, Z., Huang, X., Shi, G.: Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 62, 1531–1539 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, B., Lam, J., Xu, S.: Stability analysis of distributed delay neural networks based on relaxed Lyapunov–Krasovskii functionals. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1480–1492 (2015)

    Article  MathSciNet  Google Scholar 

  10. Xia, J., Park, J., Lee, T., Zhang, B.: \(H_{\infty }\) tracking of uncertain stochastic time-delay systems: memory state-feedback controller design. Appl. Math. Comput. 249, 356–370 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Chen, G., Xia, J., Zhuang, G.: Delay-dependent stability and dissipativity analysis of generalized neural networks with Markovian jump parameters and two delay components. J. Frankl. Inst. 353(9), 2137–2158 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xia, J., Xu, S., Song, B.: Delay-dependent \(L_{2} /L_{\infty }\) filter design for stochastic time-delay systems. Sys. Control Lett. 56, 579–587 (2007)

    Article  MATH  Google Scholar 

  13. Zhuang, G., Xia, J., Zhang, W., Zhao, J., Sun, Q., Zhang, H.: State feedback control for stochastic Markovian jump delay systems based on LaSalle-type theorem. J. Frankl. Inst. 355(5), 2179–2196 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Xu, S., Lam, J., Mao, X.: Delay-dependent \(H_{\infty }\) control and filtering for uncertain Markovian jump systems with time-varying delays. IEEE Trans. Circuit Syst.-I Regul Pap 54(9), 2070–2077 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhuang, G., Ma, Q., Zhang, B., Xu, S., Xia, J.: Admissibility and stabilization of stochastic singular Markovian jump systems with time delays. Sys. Control Lett. 114, 1–10 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Song, X., Wang, Z., Shen, H.: A unified method to energy-to-peak filter design for networked Markov switched singular systems over a finite-time interval. J. Frankl. Inst. 354(17), 7899–7916 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhou, J., Sang, C., Li, X., Fang, M., Wang, Z.: H consensus for nonlinear stochastic multi-agent systems with time delay. Appl. Math. Comput. 325, 41–58 (2018)

    MathSciNet  Google Scholar 

  18. Ahmadreza, J., Behrouz, S.: A Lyapunov-based distributed consensus filter for a class of nonlinear stochastic systems. Automatica 86, 53–62 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, W., Lin, X., Chen, B.: LaSalle-type theorem and its applications to infinite horizon optimal control of discrete-time nonlinear stochastic systems. IEEE Trans. Autom. Control 62, 250–261 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Z., Huang, X., Shi, G.: Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 62(3), 1531–1539 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chang, X., Li, Z., Park, J.: Fuzzy generalized H2 filtering for nonlinear discrete-time systems with measurement quantization. In: IEEE Tran. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2743012

  22. Chen, B., Liu, X., Lin, C.: Observer and adaptive fuzzy control design for nonlinear strict-feedback systems with unknown virtual control coefficients. In: IEEE Trans. Fuzzy Syst. (2017). https://doi.org/10.1109/TFUZZ.2017.2750619

  23. Yu, J., Shi, P., Dong, W., Lin, C.: Adaptive fuzzy control of nonlinear systems with unknown dead zones based on command filtering. IEEE Trans. Fuzzy Syst. 26(1), 46–55 (2018)

    Article  Google Scholar 

  24. Yu, J., Yu, H., Lin, C., Dong, W.: Fuzzy finite-time command filtered control of nonlinear systems with input saturation. IEEE Trans. Cyber. (2017). https://doi.org/10.1109/TCYB.2017.2738648

  25. Yu, J., Shi, P., Dong, W., Lin, C.: Command filtering-based fuzzy control for nonlinear systems with saturation input. IEEE Trans. Cyber. 47(9), 2472–2479 (2017)

    Article  Google Scholar 

  26. Shen, H., Li, F., Yan, H., Karimi, H., Lam, H.: Finite-time event-triggered H control for T-S fuzzy Markov jump systems. IEEE Trans. Fuzzy Syst. (2017). https://doi.org/10.1109/TFUZZ.2017.2788891

  27. Srinivas, N., Deb, K.: Muiltiobjective optimization using non-dominated sorting in genetic algorithms. Evol. Comput. 2, 221–248 (1994)

    Article  Google Scholar 

  28. Deb, K., Agrawal, S.: A fast elitist nondominated sorting genetic algorithm for multiobjective optimization: NSGA II. Parallel Problem Solving from Nature(PPSN), Berlin (2000)

  29. Chen, B., Ho, S.: Multiobjective tracking control design of T-S fuzzy systems: fuzzy Pareto optimal approach. Fuzzy Set. Syst. 290, 39–55 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, B., Lee, H., Wu, C.: Pareto optimal filter design for nonlinear stochastic fuzzy systems via multiobjective optimization. IEEE Trans. Fuzzy Syst. 23(2), 387–399 (2015)

    Article  Google Scholar 

  31. Wu, C., Chen, B., Zhang, W.: Multiobjective investment policy for a nonlinear stochastic financial system: a fuzzy approach. IEEE Trans. Fuzzy Syst. 25(2), 460–474 (2017)

    Article  Google Scholar 

  32. Khasminskii, R., Milstein, G.: Stochastic Stability of Differential Equations. Springer, Berlin (2011)

    MATH  Google Scholar 

  33. Yaz, E.: Linear matrix inequalities in system and control theory. Proc. IEEE 86(12), 2473–2474 (1994)

    Article  Google Scholar 

  34. Tanaka, K., Wang, H.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)

    Book  Google Scholar 

  35. Wang, Y., Xie, L., De Souza, C.E.: Robust Control of a Class of Uncertain Nonlinear Systems. Elsevier Science Publishers B. V, Amsterdam (1992)

    Book  MATH  Google Scholar 

  36. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  37. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  38. Abraham, A., Jain, L., Goldberg, R.: Evolutionary Multiobjective Optimization: Theoretical Advances and Applications. Springer, New York (2005)

    Book  MATH  Google Scholar 

  39. Coello, C., Van Veldhuizen, D., Lamont, G.: Evolutionary Algorithms for Solving Multi-objective Problems. Kluwer Academic, New York (2002)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61573177, 61773191 and the Natural Science Foundation of Shandong Province for Outstanding Young Talents in Provincial Universities under Grant ZR2016JL025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhao, J., Xia, J. et al. Multiobjective Optimization Control for Uncertain Nonlinear Stochastic System with State-Delay. Int. J. Fuzzy Syst. 21, 72–83 (2019). https://doi.org/10.1007/s40815-018-0541-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0541-0

Keywords

Navigation