Skip to main content

Advertisement

Log in

Interval Type-2 Fuzzy Logic Controller-Based Multi-level Shunt Active Power Line Conditioner for Harmonic Mitigation

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The use of variable speed drives in industries introduces harmonics that should be attenuated so as to improve the power quality. To overcome the shortcomings of the traditional passive filters in electric power system, shunt active power line conditioners (APLC) are employed. The regulation of DC capacitor voltage plays a vital role in deciding the performance of shunt APLC. Several intelligent controllers have been developed for the voltage control; however, due to high uncertainties associated with the electric power system, an interval type-2 fuzzy logic controller (IT2 FLC) is proposed. This work compares IT2 FLC, type-1 fuzzy-tuned proportional integral (PI) controller, and their performances are assessed with reference to conventional PI controller using MATLAB. Thus, the paper deals with the investigation of three-level Multi-Level Inverter which is used as shunt APLC in high-power applications using a fuzzy logic scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Das, J.C.: Passive filters—potentialities and limitations. IEEE Trans. Ind. Appl. 40, 232–241 (2004)

    Article  Google Scholar 

  2. Singh, B., Al-Haddad, K., Chandra, A.: A review of active filters for power quality improvement. IEEE Trans. Ind. Electron. 46, 960–971 (1999)

    Article  Google Scholar 

  3. Varschavsky, A., Dixon, J., Rotella, M., Moran, L.: Cascaded nine level inverter for Hybrid series active power filter, using industrial controller. IEEE Trans. Ind. Electron. 57, 2761–2767 (2010)

    Article  Google Scholar 

  4. Al-Othman, A., AlSharidah, M.E., Ahmed, N.A., Alajmi, B.N., et al.: Model predictive control for shunt active power filter in synchronous reference frame. J. Electr. Eng. Technol. 11, 405–415 (2016)

    Article  Google Scholar 

  5. Mindykowski, J., Xu, X., Tarasiuk, T.: A new concept of harmonic current detection for shunt active power filters control. Measurement (Elsevier) 46, 4334–4341 (2013)

    Google Scholar 

  6. Xu, X.Y., Mindykowski, J., Chen, C.: Study on hybrid filtering solution for marine electric network. Polish Marit. Res. 17, 72–78 (2010)

    Google Scholar 

  7. Karuppanan, P., Kamala, K.M.: Active harmonic current compensation to enhance power quality. Int. J. Electr. Power Energy Syst. 62, 144–151 (2014)

    Article  Google Scholar 

  8. Akagi, H., Inoue, S., Yoshii, T.: Control and performance of a transformerless cascade PWM STATCOM with star configuration. IEEE Trans. Ind. Appl. 43, 1041–1049 (2007)

    Article  Google Scholar 

  9. Zhou, G., Wu, B., Xu, D.: Direct power control of a multilevel inverter based active power filter. Electr. Power Syst. Res. 77, 284–294 (2007)

    Article  Google Scholar 

  10. Vijayakumar, M., Vijayan, D.: Photo voltaic based three-phase four-wire series hybrid active power filter for power quality improvement. Indian J. Eng. Mater. Sci. 21, 358–370 (2014)

    Google Scholar 

  11. Panda, A.K., Mikkili, S.: FLC based shunt active filter (p–q and Id–Iq) control strategies for mitigation of harmonics with different fuzzy MFs using MAT-LAB and real-time digital simulator. Electr. Power Energy Syst. 47, 313–336 (2013)

    Article  Google Scholar 

  12. Mahajan, V., Agarwal, P., Gupta, H.O.: An artificial intelligence based controller for multilevel harmonic filter. J. Electr. Power Energy Syst. 58, 170–180 (2014)

    Article  Google Scholar 

  13. Benchouiaa, M.T., Ghadbanea, I., Goleaa, A., Srairi, K., Benbouzidc, M.E.H.: Implementation of adaptive fuzzy logic and PI controllers to regulate the DC bus voltage of shunt active power filter. Appl. Soft Comput. 28, 125–131 (2015)

    Article  Google Scholar 

  14. Choudary, J., Singh, D.K., Verma, S.N., Ahamed, K.: Artificial intelligence based control of a shunt active power filter. In: Procedia Computer Science, 2nd International Conference on Intelligent Computing, Communication & Convergence (ICCC-2016), Vol. 92, pp. 273–281 (2016)

  15. Abdeldjalil, S., Chellali, B., Khaled, K., Nadjem, B.: An intelligent controller for a shunt active power filter for a three phase supply system. In: ICMSCE ‘17 Proceedings of the 2017 International Conference on Mechatronics Systems and Control Engineering, pp. 24–28. Abdullah Gul University, Kayseri, Turkey (2017)

  16. Benaissa, A., Rabhi, B., Moussi, A.: Power quality improvement using fuzzy logic controller for five-level shunt active power filter under distorted voltage conditions. Front. Energy 8, 212–220 (2014). https://doi.org/10.1007/s11708-013-0284-4

    Article  Google Scholar 

  17. Karuppanan, P., Mahapatra, K.K.: PI and fuzzy logic controllers for shunt active power filter—Areport. ISA Trans. 51, 163–169 (2012)

    Article  Google Scholar 

  18. Mikkili, S., Panda, A.K.: PI and fuzzy logic controller based 3-phase 4-wire shunt active filters for the mitigation of current harmonics with the Id-Iq control strategy. J. Power Electron. 11, 914–921 (2011)

    Article  Google Scholar 

  19. Bhende, C.N., Mishra, S., Jain, S.K.: TS-fuzzy-controlled active power filter for load compensation. IEEE Trans. Power Deliv. 21, 1459–1465 (2006)

    Article  Google Scholar 

  20. Sun, K., Li, Y., Tong, S.: Fuzzy adaptive output feedback optimal control design for strict-feedback nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 1, 33–44 (2017)

    Article  Google Scholar 

  21. Gnanavadivel, J., Senthil Kumar, N., Yogalakshmi, P.: Comparative study of PI, fuzzy and fuzzy tuned PI controllers for single-Phase AC–DC three-level converter. J Electr. Eng. Technol. 12, 78–90 (2017)

    Article  Google Scholar 

  22. Sun, K., Sui, S., Tong, S.: Fuzzy adaptive decentralized optimal control for strict feedback nonlinear large-scale systems. IEEE Trans. Cybern. 4, 1326–1339 (2018)

    Article  Google Scholar 

  23. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-1. Inf. Sci. 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dongrui, Wu: On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans. Fuzzy Syst. 20, 832–848 (2012)

    Article  Google Scholar 

  25. El-Bardini, M., El-Nagar, A.M.: Direct adaptive interval type-2 fuzzy logic controller for the multivariable anaesthesia system. Ain Shams Eng. J. 2, 149–160 (2011)

    Article  Google Scholar 

  26. Holmes, D.G., McGrath, B.P.: Opportunities for harmonic cancellation with carrier-based PWM for two-level and multilevel cascaded inverters. IEEE Trans. Ind. Appl. 37, 574–582 (2001)

    Article  Google Scholar 

  27. Wong, M.C., Zhao, Z.Y., Han, Y.D., Zhao, L.B.: Three-dimensional pulse width modulation technique in three-level power inverters for three-phase four wired system. IEEE Trans. Power Electron. 16, 418–427 (2001)

    Article  Google Scholar 

  28. Mondal, S.K., Bose, B.K., Oleschuk, V., Pinto, J.O.P.: Space vector pulse width modulation of three-level inverter extending operation into over modulation region. In: IEEE Power Electronics Specialists Conference (PESC) (2002)

  29. Bruckner, T., Holmes, D.G.: Optimal pulse-width modulation for three-level inverters. IEEE Trans. Power Electron. 20, 82–89 (2005)

    Article  Google Scholar 

  30. McGrath, B.P., Holmes, D.G.: Multicarrier, PWM strategies for multilevel inverters. IEEE Trans. Ind. Electron. 49, 858–867 (2002)

    Article  Google Scholar 

  31. Naderi, R., Rezarahmati, A.: Phase-shifted carrier PWM technique for general cascaded inverters. IEEE Trans. Power Electron. 23, 1257–1269 (2008)

    Article  Google Scholar 

  32. Liang, Y., Nwankpa, C.O.: New type of STATCOM based on cascading voltage source inverters with phase-shifted unipolar SPWM. In: Conference on Rec. IEEE-IAS Annu. Meeting, pp. 1447–1453 (1998)

  33. long Cao, Y. Jiang, Y.-H., Tang, Z., Tan, W.: Research on different carrier phase-shifted angle with output voltage performance of cascade multilevel inverter. In: IEEE 6th International Power Electronics and Motion Control Conference, pp. 1448–1451 (2009)

  34. Panda, A.K., Mikkili, S.: FLC based shunt active filter (p–q and Id–Iq) control strategies for mitigation of harmonics with different fuzzy MFs using MATLAB and real-time digital simulator. Electr. Power Energy Syst. 47, 313–336 (2013)

    Article  Google Scholar 

  35. Hagras, H.: Type-2 FLCs: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2, 30–43 (2007)

    Article  Google Scholar 

  36. Wu, D., Tan, W.W.: A simplified type-2 fuzzy controller for real-time control. ISA Trans. 15, 503–516 (2006)

    Google Scholar 

  37. Hassani, H., Zarei, J.: Interval type-2 fuzzy logic controller design for the speed control of DC motors. Syst. Sci. Control Eng. 3, 266–273 (2015). https://doi.org/10.1080/21642583.2015.1013644

    Article  Google Scholar 

  38. Sepulveda, R., Montiel, O., Castillo, O., Melin, P.: Embedding a high speed interval type-2 fuzzy controller for a real plant into an FPGA. Appl. Soft Comput. 12, 988–998 (2012)

    Article  Google Scholar 

  39. Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14, 808–821 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kala Rathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kala Rathi, M., Rathina Prabha, N. Interval Type-2 Fuzzy Logic Controller-Based Multi-level Shunt Active Power Line Conditioner for Harmonic Mitigation. Int. J. Fuzzy Syst. 21, 104–114 (2019). https://doi.org/10.1007/s40815-018-0547-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0547-7

Keywords

Navigation