Skip to main content
Log in

On Stabilization Conditions for T–S Systems with Nonlinear Consequent Parts

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper deals with T–S fuzzy model with nonlinear consequent parts that has shown to reduce the number of fuzzy rules and decrease modeling error comparing with conventional T–S with linear consequent parts. To further increase the benefits of using such model, many novelties in analyzing and applying it are introduced here. Canceling the nonlinear part of subsystems by fuzzy feedback linearization, using a novel fuzzy non-quadratic Lyapunov function and new relaxation methods for further reduction of conservativeness and maximizing the region of attractions are all discussed in this paper. Numerical examples illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bernal, M., Guerra, T.M.: Strategies to exploit non-quadratic local stability analysis. Int. J. Fuzzy Syst. 14(3), 372–379 (2012)

    MathSciNet  Google Scholar 

  2. Bernal, M., Sala, A., Jaadari, A., Guerra, T.M.: Stability analysis of polynomial fuzzy models via polynomial fuzzy lyapunov functions. Fuzzy Sets Syst. 185(1), 5–14 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  4. Chang, W., Hsu, F., Ku, C.: Complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via T–S fuzzy model with bilinear consequent part. Int. J. Control Autom. Syst. 15(4), 1901–1915 (2017)

    Article  Google Scholar 

  5. Chen, S., Juang, J.: A switching controller design via sum-of-squares approach for a class of polynomial T–S fuzzy model. Int. J. Innov. Comput. Inf. Control 7, 4343–4376 (2011)

    Google Scholar 

  6. Chen, S., Chang, Y., Wu, J.L., Cheng, W., Su, S.: Fuzzy control design for switched nonlinear systems. In: 2008 SICE annual conference, pp. 352–357 (2008)

  7. Dong, J.: H and mixed H 2/H control of discrete-time T–S fuzzy systems with local nonlinear models. Fuzzy Sets Syst. 164(1), 1–24 (2011)

    Article  MathSciNet  Google Scholar 

  8. Dong, J., Wang, Y.: Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems. IEEE Trans. Syst. Man Cybern. B Cybern. 40(6), 1447–1459 (2010)

    Article  Google Scholar 

  9. Dong, J., Wang, Y., Yang, G.H.: Control synthesis of continuous-time T–S fuzzy systems with local nonlinear models. IEEE Trans. Syst. Man Cybern. B Cybern. 39(5), 1245–1258 (2009)

    Article  Google Scholar 

  10. Guelton, K., Manamanni, N., Duong, C.C., Koumba-Emianiwe, D.L.: Sum-of-squares stability analysis of Takagi–Sugeno systems based on multiple polynomial lyapunov functions. Int. J. Fuzzy Syst. 15(1), 1–8 (2013)

    MathSciNet  Google Scholar 

  11. Löfberg, J.: Yalmip: A toolbox for modeling and optimization in MATLAB. In: IEEE International Symposium on Computer Aided Control Systems Design. Taipei, Taiwan (2004)

  12. Li, T., Zheng, W.X., Lin, C.: Delay-slope-dependent stability results of recurrent neural networks. IEEE Trans. Neural Netw. 22(12), 21382143 (2011)

    Google Scholar 

  13. Márquez, R., Guerra, T.M., Kruszewski, A., Bernal, M.: Improvements on non-PDC controller design for Takagi–Sugeno models. In: IEEE international conference on fuzzy systems. Hyderabad, India (2013)

  14. Moodi, H., Farrokhi, M.: Robust observer design for Sugeno systems with incremental quadratic nonlinearity in the consequent. Int. J. Appl. Math. Comput. Sci. 23(4), 711–723 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Moodi, H., Farrokhi, M.: On observer based controller design for Sugeno systems with unmeasurable premise variables. ISA Trans. 53, 305–316 (2014)

    Article  Google Scholar 

  16. Moodi, H., Farrokhi, M.: Robust observer-based controller design for Takagi–Sugeno systems with nonlinear consequent parts. Fuzzy Sets Syst. 273(15), 141–154 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moodi, H., Lauber, J., Guerra, T., Farrokhi, M.: Non-quadratic stabilization for T–S systems with nonlinear consequent parts. Commun. Comput. Inf. Sci. 444, 528–538 (2014)

    MathSciNet  Google Scholar 

  18. Rajesh, R., Kaimal, M.R.: T–S fuzzy model with nonlinear consequence and PDC controller for a class of nonlinear control systems. Appl. Soft Comput. 7(3), 772–782 (2007)

    Article  Google Scholar 

  19. Sala, A.: On the conservativeness of fuzzy and fuzzy-polynomial control of nonlinear systems. Annu. Rev. Control 33(1), 48–58 (2009)

    Article  Google Scholar 

  20. Sala, A., Arino, C.: Polynomial fuzzy models for nonlinear control, a Taylor series approach. IEEE Trans. Fuzzy Syst. 17(6), 1284–1295 (2009)

    Article  Google Scholar 

  21. Shaked, U.: Improved LMI representations for the analysis and the design of continuous-time systems with polytopic type uncertainty. IEEE Trans. Autom. Control 46(4), 652–656 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shengjuan, H., Yang, G.: Input–output based fault estimation for T–S fuzzy systems with local nonlinear parts. IEEE Trans. Fuzzy Syst. 99, 1–1 (2016)

    Google Scholar 

  23. Tanaka, K., Yoshida, H., Ohtake, H., Wang, H.O.: A sum of squares approach to stability analysis of polynomial fuzzy systems. In: American Control Conference. New York City, USA (2007)

  24. Tanaka, K., Yoshida, H., Ohtake, H., Wang, H.O.: A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems. IEEE Trans. Fuzzy Syst. 17(4), 911–922 (2009a)

    Article  Google Scholar 

  25. Tseng, C.S., Hwang, C.K.: Fuzzy observer-based fuzzy control design for nonlinear systems with persistent bounded disturbances. Fuzzy Sets Syst. 158, 164–179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tuan, H.D., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9(2), 324–332 (2001)

    Article  Google Scholar 

  27. Yakubovich, V.A.: S-procedure in nonlinear control theory. Vestn Leningr Univ (1973)

  28. Zhai, D., Lub, A., Dong, J., Zhang, Q.: Event triggered H 2/H fault detection and isolation for T–S fuzzy systems with local nonlinear models. Signal Process. 138, 244–255 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Quchan University of Technology (Grant No. 7740).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoda Moodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moodi, H., Farrokhi, M., Guerra, T.M. et al. On Stabilization Conditions for T–S Systems with Nonlinear Consequent Parts. Int. J. Fuzzy Syst. 21, 84–94 (2019). https://doi.org/10.1007/s40815-018-0548-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0548-6

Keywords

Navigation