Skip to main content

Advertisement

Log in

Multi-objective Fuzzy Programming of Closed-Loop Supply Chain Considering Sustainable Measures

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The substantial impact of environmental and social issues on business performance highlights the significant role of sustainability in supply chain network design problems. The innate uncertainty of the problem factors such as customer demand and return rates requires an integrated approach to deal with the problem. This paper aims to design a closed-loop supply chain (CLSC) network considering both sustainability and uncertainty issues. Fuzzy programming is used to address the uncertainty in this study. A fuzzy multi-objective mixed-integer linear programming is developed to simultaneously optimize a sustainable CLSC network. The objectives are considered to be the total costs and the environmental impacts minimization and social benefits maximization. Three pillars of sustainability (cost, environmental, and social) are taken into account in network design. A three-phased fuzzy solution approach is developed to solve this model. To examine the significance of the proposed model and the solution approach, a computational experiment is conducted. The results approve the applicability of the proposed approach and the feasibility of the solution methodology. Results also show that the proposed model presents a systematic framework that enables the management to obtain a satisfactory solution by adjusting the search direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abd El-Wahed, W.F.: Interactive fuzzy goal programming for multi-objective transportation problems. Omega 34(2), 158–166 (2006)

    Article  Google Scholar 

  2. Alshamsi, A., Diabat, A.: A reverse logistics network design. J. Manuf. Syst. 37(3), 589–598 (2015)

    Article  Google Scholar 

  3. Amin, S.H., Zhang, G.: A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return. Appl. Math. Model. 37(6), 4165–4176 (2013)

    Article  MathSciNet  Google Scholar 

  4. Chaabane, A., Ramudhin, A., Paquet, M.: Design of sustainable supply chains under the emission trading scheme. Int. J. Prod. Econ. 135(1), 37–49 (2012)

    Article  Google Scholar 

  5. Dai, Z., Li, Z.: Design of a dynamic closed-loop supply chain network using fuzzy bi-objective linear programming approach. J. Ind. Prod. Eng. 34(5), 330–343 (2017)

    MathSciNet  Google Scholar 

  6. Diabat, A., Theodorou, E.: A location–inventory supply chain problem: reformulation and piecewise linearization. Comput. Ind. Eng. 90, 381–389 (2015)

    Article  Google Scholar 

  7. Dubois, D., Prade, H.M.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  8. El-Sayed, M., Afia, N., El-Kharbotly, A.: A stochastic model for forward–reverse logistics network design under risk. Comput. Ind. Eng. 58(3), 423–431 (2010)

    Article  Google Scholar 

  9. Francas, D., Minner, S.: Manufacturing network configuration in supply chains with product recovery. Omega 37(4), 757–769 (2009)

    Article  Google Scholar 

  10. Gholamian, N., Mahdavi, I., Tavakoli-Moghaddam, R., Mahdavi-amiri, N.: Comprehensive fuzzy multi-objective multi-product multi-site aggregate production planning decisions in a supply chain under uncertainty. Appl. Soft Comput. 37, 585–607 (2015)

    Article  Google Scholar 

  11. Gaur, J., Amini, M., Rao, A.K.: Closed-loop supply chain configuration for new and reconditioned products: an integrated optimization model. Omega 66, 212–223 (2017)

    Article  Google Scholar 

  12. Guide Jr., V.D.R., Van Wassenhove, L.N.: The evolution of closed-loop supply chain research. Oper. Res. 57(1), 10–18 (2009)

    Article  MATH  Google Scholar 

  13. Hasani, A., Zegordi, S.H., Nikbakhsh, E.: Robust closed-loop supply chain network design for perishable goods in agile manufacturing under uncertainty. Int. J. Prod. Res. 50(16), 4649–4669 (2012)

    Article  Google Scholar 

  14. Hannan, E.L.: Linear programming with multiple fuzzy goals. Fuzzy Sets Syst. 6(3), 235–248 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making –Methods and Applications. Springer-Verlag, Berlin-Heidelberg (1981)

    Book  MATH  Google Scholar 

  16. Jamalnia, A., Soukhakian, M.A.: A hybrid fuzzy goal programming pproach with different goal priorities to aggregate production planning. Comput. Ind. Eng. 56, 1474–1486 (2009)

    Article  Google Scholar 

  17. Kannan, D., Diabat, A., Alrefaei, M., Govindan, K., Yong, G.: A carbon footprint based reverse logistics network design model. Resour. Conserv. Recycl. 67, 75–79 (2012)

    Article  Google Scholar 

  18. Keramydas, C., Mallidis, I., Dekker, R., Vlachos, D., Iakovou, E.: Cost and environmental trade-offs in supply chain network design and planning: the merit of a simulation-based approach. J. Simul. 11(1), 20–29 (2017)

    Article  Google Scholar 

  19. Kerachian, R., Karamouz, M.: A stochastic conflict resolution model for water quality management in reservoir–river systems. Adv. Water Resour. 30(4), 866–882 (2007)

    Article  Google Scholar 

  20. Keyvanshokooh, E., Ryan, S.M., Kabir, E.: Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition. Eur. J. Oper. Res. 249(1), 76–92 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kenne, J.-P., Dejax, P., Gharbi, A.: Production planning of a hybrid manufacturing–remanufacturing system under uncertainty within a closed-loop supply chain. Int. J. Prod. Econ. 135(1), 81–93 (2012)

    Article  Google Scholar 

  22. Klibi, W., Martel, A., Guitouni, A.: The design of robust value-creating supply chain networks: a critical review. Eur. J. Oper. Res. 203(2), 283–293 (2010)

    Article  MATH  Google Scholar 

  23. Lee, D.H., Dong, M.: A heuristic approach to logistics network design for end-of-lease computer products recovery. Transp. Res. E: Logist. Transp. Rev. 44(3), 455–474 (2008)

    Article  Google Scholar 

  24. Lai, Y.J., Hwang, C.L.: A new approach to some possibilistic linear programming problems. Fuzzy Sets Syst. 49(2), 121–133 (1992)

    Article  MathSciNet  Google Scholar 

  25. Lai, Y.J., Hwang, C.L.: Fuzzy Multiple Objective Decision Making, Methods and Applications. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  26. Li, X.Q., Zhang, B., Li, H.: Computing efficient solutions to fuzzy multiple objective linear programming problems. Fuzzy Sets Syst. 157(11), 1328–1332 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liang, T.F.: Distribution planning decisions using interactive fuzzy multi-objective linear programming. Fuzzy Sets Syst. 157(10), 1303–1316 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liang, T.F., Cheng, H.W.: Application of fuzzy sets to manufacturing/distribution planning decisions with multi-product and multi-time period in supply chains. Expert Syst. Appl. 36(2), 3367–3377 (2009)

    Article  Google Scholar 

  29. Liang, T.-F.: Fuzzy multi objective production/distribution planning decisions with multi product and multi time period in a supply chain. Comput. Ind. Eng. 55(3), 676–694 (2008)

    Article  Google Scholar 

  30. Luhandjula, M.K.: Fuzzy optimization: an appraisal. Fuzzy Sets Syst. 30, 257–282 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Millet, D.: Designing a sustainable reverse logistics channel: the 18 generic structures framework. J. Clean. Prod. 19(6), 588–597 (2011)

    Google Scholar 

  32. Mula, J., Peidro, D., Madronero, M.D., Vicens, E.: Mathematical programming models for supply chain production and transport planning. Eur. J. Oper. Res. 204(3), 377–390 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Özceylan, E., Paksoy, T.: A mixed integer programming model for a closed-loop supply-chain network. Int. J. Prod. Res. 51(3), 718–734 (2013)

    Article  Google Scholar 

  34. Paksoy, T., Bektas, T., O¨zceylan, E.: Operational and environmental performance measures in a multi-product closed-loop supply chain. Transp. Res. E Logist. Transp. Rev. 47(4), 532–546 (2011)

    Article  Google Scholar 

  35. Paksoy, T., Özceylan, E., Weber, G.W.: A multi objective model for optimization of a green supply chain network. In: Barsoum N., Weber G.W., Vasant, P. (eds.) AIP Conference Proceedings, vol. 1239, no. 1, pp. 311–320. AIP (2010)

  36. Pishvaee, M.S., Torabi, S.A.: A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy Sets Syst. 161(20), 2668–2683 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pishvaee, M.S., Rabbani, M., Torabi, S.A.: A robust optimization approach to closed-loop supply chain network design under uncertainty. Appl. Math. Model. 35(2), 637–649 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pishvaee, M.S., Razmi, J.: Environmental supply chain network design using multi-objective fuzzy mathematical programming. Appl. Math. Model. 36(8), 3433–3446 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pishvaee, M.S., Torabi, S.A., Razmi, J.: Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty. Comput. Ind. Eng. 62(2), 624–632 (2012)

    Article  Google Scholar 

  40. Phuc, P.N.K., Yu, V.F., Chou, S.Y.: Optimizing the fuzzy closed-loop supply chain for electrical and electronic equipments. Int. J. Fuzzy Syst. 15(1), 9–21 (2013)

    Google Scholar 

  41. Ramezani, M., Bashiri, M., Tavakkoli-Moghaddam, R.: A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level. Appl. Math. Model. 37(1–2), 328–344 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ramezani, M., Kimiagari, A.M., Karimiz, B.: Closed-loop supply chain network design: a financial approach. Appl. Math. Model. 38(15–16), 4099–4119 (2014)

    Article  MATH  Google Scholar 

  43. Rommelfanger, H.: Fuzzy linear programming and applications. Eur. J. Oper. Res. 92(3), 512–527 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sakawa, M., Yano, H.: Interactive fuzzy satisficing method for multi-objective nonlinear programming problems with fuzzy parameters. Fuzzy Sets Syst. 30, 221–238 (1989)

    Article  MATH  Google Scholar 

  45. Sakawa, M.: An interactive fuzzy satisficing method for multiobjective linear fractional programming problems. Fuzzy Sets Syst. 28(2), 129–144 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  46. Selim, H., Ozkarahan, I.: A supply chain distribution network design model: an interactive fuzzy goal programming-based solution approach. Int. J. Adv. Manuf. Technol. 36(3), 401–418 (2008)

    Article  Google Scholar 

  47. Seuring, S.: A review of modeling approaches for sustainable supply chain management. Decis. Support Syst. 54(4), 1513–1520 (2013)

    Article  Google Scholar 

  48. Sherafati, M., Bashiri, M.: Closed loop supply chain network design with fuzzy tactical decisions. J. Ind. Eng. Int. 12(3), 255–269 (2016)

    Article  Google Scholar 

  49. Subulan, K., Tasan, A.S., Baykaso˘glu, A.: Fuzzy mixed integer programming model for medium-term planning in a closed-loop supply chain with remanufacturing option. J. Intell. Fuzzy Syst. 23(6), 345–368 (2012)

    MathSciNet  Google Scholar 

  50. Tang, C.S., Zhou, S.: Research advances in environmentally and socially sustainable operations. Eur. J. Oper. Res. 223(3), 585–594 (2012)

    Article  Google Scholar 

  51. Tanaka, H., Asai, K.: Fuzzy linear programming with fuzzy numbers. Fuzzy Sets Syst. 13, 1–10 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tanaka, H., Ichihashi, H., Asai, K.: A formulation of fuzzy linear programming problem based on comparison of fuzzy numbers. Control Cybern. 13(3), 185–194 (1984)

    MathSciNet  MATH  Google Scholar 

  53. Torabi, S.A., Hassini, E.: An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets Syst. 159(2), 193–214 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  54. Vahdani, B., Jolai, F., Tavakkoli-Moghaddam, R., Mousavi, S.M.: Two fuzzy possibilistic bi-objective zero-one programming models for outsourcing the equipment maintenance problem. Eng. Optim. 44(7), 801–820 (2012)

    Article  MathSciNet  Google Scholar 

  55. Wang, R.C., Liang, T.F.: Applying possibilistic linear programming to aggregate production planning. Int. J. Prod. Econ. 98(3), 328–341 (2005)

    Article  Google Scholar 

  56. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  57. Zailani, S., Jeyaraman, K., Vengadasan, G., Premkumar, R.: Sustainable supply chain management (SSCM) in Malaysia: a survey. Int. J. Prod. Econ. 140(1), 330–340 (2012)

    Article  Google Scholar 

  58. Zeballos, L., Gomes, M., Barbosa-Povoa, A.P., Novais, A.Q.: Addressing theuncertain quality and quantity of returns in closed-loop supply chains. Comput. Chem. Eng. 47, 237–247 (2012)

    Article  Google Scholar 

  59. Zhou, Z., Cheng, S., Hua, B.: Supply chain optimization of continuous process industries with sustainability considerations. Comput. Chem. Eng. 24(2–7), 1151–1158 (2000)

    Article  Google Scholar 

  60. Zhang, Y.M., Huang, G.H., He, L.: An inexact reverse logistics model for municipal solid waste management systems. J. Environ. Manage. 92(3), 522–530 (2011)

    Article  Google Scholar 

  61. Zimmermann, H.-J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1(1), 45–56 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zimmermann, H.-J.: Fuzzy Set Theory and Its Applications. Kluwer Academic Publications, Boston (1996)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This paper research has been supported by a grant (No 155147-2013) from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene V. Mayorga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourjavad, E., Mayorga, R.V. Multi-objective Fuzzy Programming of Closed-Loop Supply Chain Considering Sustainable Measures. Int. J. Fuzzy Syst. 21, 655–673 (2019). https://doi.org/10.1007/s40815-018-0551-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0551-y

Keywords

Navigation