Skip to main content
Log in

Bit Pressure Control During Drilling Operations Using a Direct Fuzzy Adaptive Controller

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

One of the high-risk parts in the oil industry is the drilling of oil and gas wells. At any moment, during drilling operations, there is the probability of well blowout due to the sudden entry of the formation fluid into the well. One of the methods used for preventing the blowout of wells is the online monitoring and control of bit pressure during the drilling operations. In this article, a direct fuzzy adaptive controller is used to control bit pressure. To evaluate the performance of this controller, the results are compared with three methods including the model reference adaptive controller, the self-tuning controller and the proportional–integral–derivative controller. Also, for the first time, the reference tracking scenario is used to investigate the ability of the controller to track bit pressure by changing the reference pressure of different formations during the drilling operations. The results show the superiority of the direct fuzzy adaptive control in controlling bit pressure based on the process output tracking criteria, control effort, controller tracking error and cost functions, as compared to other controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(p_{\text{p}}\) :

Mud pump pressure (bar)

\(p_{\text{c}}\) :

Choke manifold pressure (bar)

\(p_{\text{b}}\) :

Bit pressure (bar)

\(q_{\text{p}}\) :

Mud pump flow rate \(({\text{m}}^{3} / {\text{s}})\)

\(q_{\text{c}}\) :

Chock manifold flow rate \(({\text{m}}^{3} / {\text{s}})\)

\(q_{\text{b}}\) :

Bit flow rate \(({\text{m}}^{3} / {\text{s}})\)

\(p_{\text{p}}^{0}\) :

Initial mud pump pressure (bar)

\(p_{\text{c}}^{0}\) :

Initial choke manifold pressure (bar)

\(q_{\text{b}}^{0}\) :

Initial bit flow rate \(({\text{m}}^{3} / {\text{s}})\)

\(\beta_{\text{a}}\) :

Annulus mud bulk modulus (bar)

\(\beta_{\text{d}}\) :

Drill string mud bulk modulus (bar)

\(V_{\text{a}}\) :

Annulus volume \(({\text{m}}^{3} )\)

\(V_{\text{d}}\) :

Drill string volume \(({\text{m}}^{3} )\)

\(M_{\text{a}}\) :

Mass coefficient of the annulus \((10^{ - 5} \times {\text{kg/m}}^{4} )\)

\(M_{\text{d}}\) :

Mass coefficient of the drill string \((10^{ - 5} \times {\text{kg/m}}^{4} )\)

\(F_{\text{a}}\) :

Annulus friction factor

\(F_{\text{d}}\) :

Drill string friction factor

\(\rho_{\text{a}}\) :

Annulus density \((10^{ - 5} \times {\text{kg/m}}^{3} )\)

\(\rho_{\text{d}}\) :

Drill string density \((10^{ - 5} \times {\text{kg/m}}^{3} )\)

\(h_{\text{b}}\) :

Vertical depth of the drill bit (m)

\(g\) :

Gravity acceleration \(({\text{m/s}}^{2} )\)

\(q_{\text{r}}\) :

Flow rate of reservoir fluids \(({\text{m}}^{3} / {\text{s}})\)

\(q_{\text{back}}\) :

Back pump flow rate \(({\text{m}}^{3} / {\text{s}})\)

\(p_{0}\) :

Pressure outside system (bar)

References

  1. Li, J., Yang, S., Liu, G.: Cutting breakage and transportation mechanism of air drilling. Int. J. Oil Gas Coal Technol. 6(3), 259–270 (2013)

    Article  Google Scholar 

  2. Wang, Z., Sun, B.: Annular multiphase flow behavior during deep water drilling and the effect of hydrate phase transition. Pet. Sci. 6(1), 57–63 (2009)

    Article  MathSciNet  Google Scholar 

  3. Zhiming, W., Liqiu, P., Ke, Z.: Prediction of dynamic wellbore pressure in gasified fluid drilling. Pet. Sci. 4(4), 66–73 (2007)

    Article  Google Scholar 

  4. Imanian, M., Ghassemi, A., Karbasian, M.: Monitoring and control of bottomhole pressure during surge and swab operations using statistical process control. Energy Source Part A 40(8), 894–904 (2018)

    Article  Google Scholar 

  5. Nandan, A., Imtiaz, S.: Nonlinear model predictive control of managed pressure drilling. ISA Trans. 69, 307–314 (2017)

    Article  Google Scholar 

  6. Liu, G., Zhang, T., Li, J., Yulong, Y.: Modeling the pressure characteristics of parallel chokes used in managed pressure drilling and related experiments. Pet. Sci. 9(3), 363–369 (2012)

    Article  Google Scholar 

  7. Kaasa, G.-O., Stamnes, Ø.N., Aamo, O.M., Imsland, L.S.: Simplified hydraulics model used for intelligent estimation of downhole pressure for a managed-pressure-drilling control system. SPE Drill. Complet. 27(1), 127–138 (2012)

    Article  Google Scholar 

  8. Salahshoor, K., Lotfi, B.: Adaptive control of well drilling systems. Irani. J. Oil Gas Sci. Technol. 2(4), 26–38 (2013)

    Google Scholar 

  9. Imanian, M., Ghassemi, A., Karbasian, M.: Bit pressure control during drilling operation using engineering process control. Energy Source Part A 40(18), 2193–2202 (2018)

    Article  Google Scholar 

  10. Astrom, K.J., Wittenmark, B.: Adaptive control, 2nd edn. Addison-Wesley, Massachusetts (2008)

    Google Scholar 

  11. Astrom, K.J., Borisson, U., Ljung, L., Wittenmark, B.: Theory and applications of self-tuning regulators. Automatica 13(5), 457–476 (1977)

    Article  MATH  Google Scholar 

  12. Wang, L.X.: A course in fuzzy systems and control, 1st edn. Prentice-Hall, New Jersey (1996)

    Google Scholar 

  13. Kavuran, G., Ates, A., Alagoz, B.B., Yeroglu, C.: An experimental study on model reference adaptive control with fractional order adjustment rules for DC rotor control. Control Eng. Appl. Inform. 19(4), 101–111 (2017)

    Google Scholar 

  14. Zhang, F., Li, Y., Hua, J.: Direct adaptive fuzzy control of SISO nonlinear systems with input–output nonlinear relationship. Int. J. Fuzzy Syst. 20(4), 1069–1078 (2017)

    Article  MathSciNet  Google Scholar 

  15. Veysi, M., Soltanpour, M.R.: Voltage-base control of robot manipulator using adaptive fuzzy sliding mode control. Int. J. Fuzzy Syst. 19(5), 1430–1443 (2017)

    Article  MathSciNet  Google Scholar 

  16. Bounar, M., Boulkoroune, A., Boudjemam, F.: Adaptive fuzzy control of doubly-fed induction machine. Control Eng. Appl. Inform. 16(2), 98–110 (2014)

    Google Scholar 

  17. Yang, L., Li, J.: Adaptive fuzzy sliding mode control for nano-positioning of piezoelectric actuators. Int. J. Fuzzy Syst. 19(1), 238–246 (2017)

    Article  MathSciNet  Google Scholar 

  18. Wang, N., Tong, S., Li, Y.: Observer-based adaptive fuzzy control of nonlinear non-strict feedback system with input delay. Int. J. Fuzzy Syst. 20(1), 236–245 (2018)

    Article  MathSciNet  Google Scholar 

  19. Li, Y., Liu, L., Feng, G.: Robust adaptive output feedback control to a class of non-triangular stochastic nonlinear systems. Automatica 89, 325–332 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, Y., Tong, S.: Adaptive fuzzy control with prescribed performance for block-triangular-structured nonlinear systems. IEEE Trans. Fuzzy Syst. 26(3), 1–10 (2018)

    Article  MathSciNet  Google Scholar 

  21. Li, Y., Tong, S.: Adaptive neural networks prescribed performance control design for switched interconnected uncertain nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 29(7), 2243–2255 (2018)

    Article  MathSciNet  Google Scholar 

  22. Dombi, J., Szepe, T.: Arithmetic-based fuzzy control. Iran. J. Fuzzy. Syst. 14(4), 51–66 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Wang, M.L., Joel, A.P., Yan, H.C., Shi, H.B.: An adaptive model predictive control strategy for nonlinear distributed parameter systems using the type-2 Takagi–Sugeno model. Int. J. Fuzzy Syst. 18(5), 792–805 (2016)

    Article  MathSciNet  Google Scholar 

  24. Liu, Y.J., Tong, S.C.: Adaptive fuzzy identification and control for a class of nonlinear pure-feedback MIMO systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 23(5), 1387–1398 (2015)

    Article  Google Scholar 

  25. Wang, H., Wang, Z.F., Liu, Y.J., Tong, S.C.: Fuzzy tracking adaptive control of discrete-time switched nonlinear systems. Fuzzy Sets Syst. 316(1), 35–48 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gao, Y., Tong, S.C.: Composite adaptive fuzzy output feedback dynamic surface control design for uncertain nonlinear stochastic systems with input quantization. Int. J. Fuzzy Syst. 17(4), 609–622 (2015)

    Article  MathSciNet  Google Scholar 

  27. Tong, S.C., Li, Y.M., Sui, S.A.: Adaptive fuzzy output feedback control for switched nonstrict-feedback nonlinear systems with input nonlinearities. IEEE Trans. Fuzzy Syst. 24(6), 1426–1440 (2016)

    Article  Google Scholar 

  28. Tong, S.C., Li, Y.M., Sui, S.A.: Adaptive fuzzy tracking control design for SISO uncertain nonstrict feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 4(6), 1441–1454 (2016)

    Article  Google Scholar 

  29. Lin, T.C., Lin, Y.C., Du, Z.B., Chu, T.C.: Indirect adaptive fuzzy supervisory control with state observer for unknown nonlinear time delay system. Int. J. Fuzzy Syst. 19(1), 215–224 (2017)

    Article  MathSciNet  Google Scholar 

  30. Wu, Y., Lu, R., Shi, P., Su, H., Wu, Z.: Sampled-data synchronization of complex networks with partial couplings and T–S fuzzy nodes. IEEE Trans. Fuzzy Syst. 26(2), 782–793 (2018)

    Article  Google Scholar 

  31. Wu, Y., Lu, R.: Event-based control for network systems via integral quadratic constraints. IEEE Trans. Circuits Syst. I Regul. Pap. 65(4), 1386–1394 (2018)

    Article  MathSciNet  Google Scholar 

  32. Wu, Y., Lu, R., Shi, P., Su, H., Wu, Z.: Analysis and design of synchronization for heterogeneous network. IEEE Trans. Cybern. 48(4), 1253–1262 (2018)

    Article  Google Scholar 

  33. Jagatheesan, K., Anand, B., Dey, K.N., Ashour, A.S., Satapathy, S.C.: Performance evaluation of objective functions in automatic generation control of thermal power system using ant colony optimization technique-designed proportional–integral–derivative controller. Electr. Eng. 100(2), 895–911 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aazam Ghassemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imanian, M., Ghassemi, A. & Karbasian, M. Bit Pressure Control During Drilling Operations Using a Direct Fuzzy Adaptive Controller. Int. J. Fuzzy Syst. 21, 488–502 (2019). https://doi.org/10.1007/s40815-018-0570-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0570-8

Keywords

Navigation