Skip to main content
Log in

Loss Aversion Equilibrium of Bimatrix Games with Symmetric Triangular Fuzzy Payoffs

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Inspired by Shalev’s model of loss aversion, we propose a bimatrix game with loss aversion, where the elements in payoff matrices are characterized as symmetric triangular fuzzy numbers, and investigate the effect of loss aversion on equilibrium strategies. Firstly, we define a solution concept of (α, β)-loss aversion Nash equilibrium and prove that it exists in any bimatrix game with loss aversion and symmetric triangular fuzzy payoffs. Furthermore, a sufficient and necessary condition is proposed to find the (α, β)-loss aversion Nash equilibrium. Finally, for a 2 × 2 bimatrix game with symmetric triangular fuzzy payoffs, the relation between the (α, β)-loss aversion Nash equilibrium and loss aversion coefficients is discussed when players are loss averse and it is analyzed when a player can benefit from his opponent’s misperceiving belief about his loss aversion level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Asmus, T.C., Dimuro, G.P., Bedregal, B.: On two-player interval-valued fuzzy Bayesian games. Int. J. Intell. Syst. 32(6), 557–596 (2017)

    Article  Google Scholar 

  2. Bector, C.R., Chandra, S., Vijay, V.: Duality in linear programming with fuzzy parameters and matrix games with fuzzy payoffs. Fuzzy Sets Syst. 146(2004), 253–269 (2004)

    Article  MATH  Google Scholar 

  3. Bector, C.R., Chandra, S.: Fuzzy Mathematical Programming and Fuzzy Matrix Games. Springer, Berlin (2005)

    MATH  Google Scholar 

  4. Berg, J.: Statistical mechanics of random two-player games. Phys. Rev. E 61(3), 2327 (2000)

    Article  MathSciNet  Google Scholar 

  5. Blau, R.A.: Random-payoff two-person zero-sum games. Oper. Res. 22(6), 1243–1251 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Butnariu, D.: Fuzzy games, a description of the concept. Fuzzy Sets Syst. 1, 181–192 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Campos, L.: Fuzzy linear programming models to solve fuzzy matrix games. Fuzzy Sets Syst. 32(3), 275–289 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cassidy, R.G., Field, C.A., Kirby, M.J.L.: Solution of a satisficing model for random payoff games. Manag. Sci. 19(3), 266–271 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chandra, S., Aggarwal, A.: On solving matrix games with pay-offs of triangular fuzzy numbers: certain observations and generalizations. Eur. J. Oper. Res. 246(2), 575–581 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Charnes, A., Kirby, M.J., Raike, W.M.: Zero-zero chance-constrained games. Theory Probab. Appl. 13(4), 628–646 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Y., Liu, Y., Wu, X.: A new risk criterion in fuzzy environment and its application. Appl. Math. Model. 36(7), 3007–3028 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dittmann, I., Maug, E., Spalt, O.: Sticks or carrots? Optimal CEO compensation when managers are loss averse. J. Finance 65, 2015–2050 (2010)

    Article  Google Scholar 

  13. Driesen, B., Perea, A., Peters, H.: On loss aversion in bimatrix games. Theor. Decis. 68(4), 367–391 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Driesen, B., Perea, A., Peters, H.: The Kalai-Smorodinsky bargaining solution with loss aversion. Math. Soc. Sci. 61(1), 58–64 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Driesen, B., Perea, A., Peters, H.: Alternating offers bargaining with loss aversion. Math. Soc. Sci. 64(2), 103–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dubois, D., Prade, H.: Ranking fuzzy numbers in the setting of possibility theory. Inf. Sci. 30(3), 183–224 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dunn, L.F.: Loss aversion and adaptation in the labour market: empirical indifference functions and labour supply. Rev. Econ. Stat. 78, 441–450 (1996)

    Article  Google Scholar 

  18. Ein-Dor, L., Kanter, I.: Matrix games with nonuniform payoff distributions. Phys. A 302(1), 80–88 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fishburn, P.C., Kochenberger, G.A.: Two-piece Von Neumann-Morgenstern utility functions. Decis. Sci. 10(4), 503–518 (1979)

    Article  Google Scholar 

  20. Freund, C., Özden, C.: Trade policy and loss aversion. Am. Econ. Rev. 98, 1675–1691 (2008)

    Article  Google Scholar 

  21. Furukawa, N.: A parametric total order on fuzzy numbers and a fuzzy shortest route problem. Optimization 30, 367–377 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gani, A.N., Assarudeen, S.N.M.: A new operation on triangular fuzzy number for solving fuzzy linear programming problem. Appl. Math. Sci. 6(12), 525–532 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Genesove, D., Mayer, C.: Loss aversion and seller behavior: evidence from the housing market. Quart. J. Econ. 116, 1233–1260 (2001)

    Article  MATH  Google Scholar 

  24. Harsanyi, J.C.: Games with incomplete information played by ‘Bayesian’ player, Part I. The basic model. Manag. Sci. 14, 159–182 (1967)

    Article  MATH  Google Scholar 

  25. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kramer, R.M.: Windows of vulnerability or cognitive illusions? Cognitive processes and the nuclear arms race. J. Exp. Soc. Psychol. 25(1), 79–100 (1989)

    Article  Google Scholar 

  27. Li, C., Zhang, Q.: Nash equilibrium strategy for fuzzy non-cooperative games. Fuzzy Sets Syst. 176(1), 46–55 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, D.F.: Linear programming approach to solve interval-valued matrix games. Omega 39(6), 655–666 (2011)

    Article  Google Scholar 

  29. Li, D.F.: A fast approach to compute fuzzy values of matrix games with triangular fuzzy payoffs. Eur. J. Oper. Res. 223(2), 421–429 (2012)

    Article  MATH  Google Scholar 

  30. Ma, W., Luo, X., Jiang, Y.: Matrix games with missing, interval, and ambiguous lottery payoffs of pure strategy profiles and compound strategy profiles. Int. J. Intell. Syst. 33(3), 529–559 (2018)

    Article  Google Scholar 

  31. Maeda, T.: Characterization of the equilibrium strategy of the bimatrix game with fuzzy payoff. J. Math. Anal. Appl. 251(2), 885–896 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Maeda, T.: On characterization of equilibrium strategy of two-person zero-sum games with fuzzy payoffs. Fuzzy Sets Syst. 139(2), 283–296 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Moore, R.E.: Method and Application of Interval Analysis. SIAM, Philadelphia (1979)

    Book  Google Scholar 

  34. Nan, J.X., Zhang, M.J., Li, D.F.: A methodology for matrix games with payoffs of triangular intuitionistic fuzzy number. J. Intell. Fuzzy Syst. 26(6), 2899–2912 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Nash, J.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36, 48–49 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  36. Negoita, C., Zadeh, L., Zimmermann, H.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(3–28), 61–72 (1978)

    MathSciNet  Google Scholar 

  37. Nishazaki, I., Sakawa, M.: Equilibrium solution in bimatrix games with fuzzy payoffs. Jpn. J. Fuzzy Theory Syst. 9(3), 307–324 (1997)

    MathSciNet  Google Scholar 

  38. Nishazaki, I., Sakawa, M.: Fuzzy and Multiobjective Games for Conflict Resolution. Studies in Fuzziness and Soft Computing, 64. Physica-Verlag, Heidelberg (2001)

    Book  Google Scholar 

  39. Peters, H.: A preference foundation for constant loss aversion. Working Paper. Maastricht University (2010)

  40. Peters, H.: A preference foundation for constant loss aversion. J. Math. Econ. 48(1), 21–25 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ramík, J.: Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets Syst. 16(2), 123–138 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  42. Roberts, D.P.: Nash equilibria of Cauchy-random zero-sum and coordination matrix games. Int. J. Game Theory 34(2), 167–184 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rosenblatt-Wisch, R.: Loss aversion in aggregate macroeconomic time series. Eur. Econ. Rev. 52, 1140–1159 (2008)

    Article  Google Scholar 

  44. Sakawa, M., Yano, H.: Feasibility and Pareto optimality for multi-objective programming problems with fuzzy parameters. Fuzzy Sets Syst. 40(1), 1–15 (1991)

    Article  MATH  Google Scholar 

  45. Schmidt, U.: Reference dependence in cumulative prospect theory. J. Math. Psychol. 47, 122–131 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shalev, J.: Loss aversion equilibrium. Int. J. Game Theory 29(2), 269–287 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shalev, J.: Loss aversion and bargaining. Theor. Decis. 52, 201–232 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sugden, R.: Reference-dependent subjective expected utility. J. Econ. Theory 111, 172–191 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tan, C., Yi, W., Chen, X.: Bertrand game under a fuzzy environment. J. Intell. Fuzzy Syst. 34(4), 2611–2624 (2018)

    Article  Google Scholar 

  50. Tan, C., Liu, Z., Wu, D.D., Chen, X.: Cournot game with incomplete information based on rank-dependent utility theory under a fuzzy environment. Int. J. Prod. Res. 56(5), 1789–1805 (2018)

    Article  Google Scholar 

  51. Taylor, S.E.: Asymmetrical effects of positive and negative events: the mobilization-minimization hypothesis. Psychol. Bull. 110(1), 67 (1991)

    Article  Google Scholar 

  52. Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5, 297–323 (1992)

    Article  MATH  Google Scholar 

  53. Vijay, V., Chandra, S., Bector, C.R.: Matrix games with fuzzy goals and fuzzy payoffs. Omega 33(5), 425–429 (2005)

    Article  Google Scholar 

  54. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 71671188 and 71874112), Beijing Intelligent Logistics System Collaborative Innovation Center (BILSCIC-2018KF-04), and Natural Science Foundation of Hunan Province, China (2016JJ1024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunqiao Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, C., Feng, Z., Tan, C. et al. Loss Aversion Equilibrium of Bimatrix Games with Symmetric Triangular Fuzzy Payoffs. Int. J. Fuzzy Syst. 21, 892–907 (2019). https://doi.org/10.1007/s40815-019-00611-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00611-3

Keywords

Navigation