Skip to main content
Log in

A Multiple-Criteria Decision-Making Method Based on D Numbers and Belief Entropy

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Multiple-criteria decision-making (MCDM) is an important branch of operations research which judges multiple criteria under decision-making environments. In the process of handling MCDM problems, because of the subjective judgment of human beings, it unavoidably involves a variety of uncertainties, like imprecision, fuzziness and incompleteness. The D numbers, as a reliable and effective expression of uncertain information, has a good performance to handle these types of uncertainties. However, there still are some spaces to be further researched. Therefore, a novel belief entropy-based method with regard to D numbers is proposed for MCDM problems. Finally, an application in the MCDM problem is illustrated to reveal the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mardani, A., Jusoh, A., Zavadskas, E.K.: Fuzzy multiple criteria decision-making techniques and applications—two decades review from 1994 to 2014. Expert Syst. Appl. 42(8), 4126–4148 (2015)

    Article  Google Scholar 

  2. He, Z., Jiang, W.: An evidential Markov decision making model. Inf. Sci. 467, 357–372 (2018)

    Article  MathSciNet  Google Scholar 

  3. Pedrycz, W., Al-Hmouz, R., Morfeq, A., Balamash, A.S.: Building granular fuzzy decision support systems. Knowl. Based Syst. 58, 3–10 (2014)

    Article  Google Scholar 

  4. Seiti, H., Hafezalkotob, A., Fattahi, R.: Extending a pessimistic-optimistic fuzzy information axiom based approach considering acceptable risk: application in the selection of maintenance strategy. Appl. Soft Comput. 67, 895–909 (2018)

    Article  Google Scholar 

  5. Dadelo, S., Turskis, Z., Zavadskas, E.K., Dadeliene, R.: Multi-criteria assessment and ranking system of sport team formation based on objective-measured values of criteria set. Expert Syst. Appl. 41(14), 6106–6113 (2014)

    Article  Google Scholar 

  6. Jiang, W., Wei, B., Liu, X., Li, X., Zheng, H.: Intuitionistic fuzzy evidential power aggregation operator and its application in multiple criteria decision-making. Int. J. Syst. Sci. 49, 582–594 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kang, B., Deng, Y., Hewage, K., Sadiq, R.: Generating Z-number based on OWA weights using maximum entropy. Int. J. Intell. Syst. 33(8), 1745–1755 (2018)

    Article  Google Scholar 

  8. Zavadskas, E.K., Mardani, A., Turskis, Z., Jusoh, A., Nor, K.M.: Development of TOPSIS method to solve complicated decision-making problems: An overview on developments from 2000 to 2015. Int. J. Inf. Technol. Decis. Mak. 15(03), 645–682 (2016)

    Article  Google Scholar 

  9. Lolli, F., Ishizaka, A., Gamberini, R., Rimini, B., Messori, M.: FlowSort-GDSS-A novel group multi-criteria decision support system for sorting problems with application to FMEA. Expert Syst. Appl. 42(17), 6342–6349 (2015)

    Article  Google Scholar 

  10. Evans, J.P., Steuer, R.E.: A revised simplex method for linear multiple objective programs. Math. Program. 5(1), 54–72 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yu, P., Zeleny, M.: The set of all nondominated solutions in linear cases and a multicriteria simplex method. J. Math. Anal. Appl. 49(2), 430–468 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Trade-Offs. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  13. Liu, H.-C., You, J.-X., You, X.-Y., Shan, M.-M.: A novel approach for failure mode and effects analysis using combination weighting and fuzzy VIKOR method. Appl. Soft Comput. 28, 579–588 (2015)

    Article  Google Scholar 

  14. Zhang, W., Deng, Y.: Combining conflicting evidence using the DEMATEL method. Soft Comput. (2018). https://doi.org/10.1007/s00500-018-3455-8

    Google Scholar 

  15. Han, Y., Deng, Y.: An enhanced fuzzy evidential DEMATEL method with its application to identify critical success factors. Soft Comput. 22(15), 5073–5090 (2018)

    Article  Google Scholar 

  16. Zhou, X., Hu, Y., Deng, Y., Chan, F.T.S., Ishizaka, A.: A DEMATEL-based completion method for incomplete pairwise comparison matrix in AHP. Ann. Oper. Res. 271(2), 1045–1066 (2018). https://doi.org/10.1007/s10479-018-2769-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Su, S.-F., Chen, M.-C., Hsueh, Y.-C.: A novel fuzzy modeling structure-decomposed fuzzy system. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2311–2317 (2017)

    Article  Google Scholar 

  18. Wang, N., Sun, Z., Su, S.-F., Wang, Y.: Fuzzy uncertainty observer-based path-following control of underactuated marine vehicles with unmodeled dynamics and disturbances. Int. J. Fuzzy Syst. 20(8), 2593–2604 (2018)

    Article  MathSciNet  Google Scholar 

  19. Kang, B., Deng, Y., Hewage, K., Sadiq, R.: A method of measuring uncertainty for Z-number. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2018.2868496

    Google Scholar 

  20. Fei, L., Deng, Y., Hu, Y.: DS-VIKOR: a new multi-criteria decision-making method for supplier selection. Int. J. Fuzzy Syst. (2018). https://doi.org/10.1007/s40815-018-0543-y

    Google Scholar 

  21. Deng, X., Jiang, W.: Dependence assessment in human reliability analysis using an evidential network approach extended by belief rules and uncertainty measures. Ann. Nucl. Energy 117, 183–193 (2018)

    Article  Google Scholar 

  22. Su, X., Mahadevan, S., Xu, P., Deng, Y.: Dependence assessment in human reliability analysis using evidence theory and AHP. Risk Anal. 35(7), 1296–1316 (2015)

    Article  Google Scholar 

  23. Zavadskas, E.K., Turskis, Z., Bagočius, V.: Multi-criteria selection of a deep-water port in the Eastern Baltic Sea. Appl. Soft Comput. 26, 180–192 (2015)

    Article  Google Scholar 

  24. Fu, C., Xu, D.-L.: Determining attribute weights to improve solution reliability and its application to selecting leading industries. Ann. Oper. Res. 245, 401–426 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Han, Y., Deng, Y.: A hybrid intelligent model for assessment of critical success factors in high risk emergency system. J. Ambient Intell. Humaniz. Comput. 9(6), 1933–1953 (2018)

    Article  Google Scholar 

  26. Su, S.-F., Hsueh, Y.-C., Tseng, C.-P., Chen, S.-S., Lin, Y.-S.: Direct adaptive fuzzy sliding mode control for under-actuated uncertain systems. Int. J. Fuzzy Log. Intell. Syst. 15(4), 240–250 (2015)

    Article  Google Scholar 

  27. Wang, N., Su, S.-F., Yin, J., Zheng, Z., Er, M.J.: Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: an adaptive universe-based fuzzy control approach. IEEE Trans. Fuzzy Syst. 26(3), 1613–1625 (2018)

    Article  Google Scholar 

  28. Deng, Y.: D numbers: Theory and applications. J. Inf. Comput. Sci. 9(9), 2421–2421 (2012)

    Google Scholar 

  29. Deng, X., Deng, Y.: D-AHP method with different credibility of information. Soft Comput. (2018). https://doi.org/10.1007/s00500-017-2993-9

    Google Scholar 

  30. Mo, H., Deng, Y.: A new MADA methodology based on D numbers. Int. J. Fuzzy Syst. 20(8), 2458–2469 (2018)

    Article  MathSciNet  Google Scholar 

  31. Wang, N., Liu, F., Wei, D.: A modified combination rule for D numbers theory. Math. Probl. Eng. 2016, 1–10 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Rikhtegar, N., Mansouri, N., Ahadi Oroumieh, A., Yazdani-Chamzini, A., Kazimieras Zavadskas, E., Kildienė, S.: Environmental impact assessment based on group decision-making methods in mining projects. Econ. Res./Ekon. Istraž. 27(1), 378–392 (2014)

    Google Scholar 

  33. Liu, H.-C., You, J.-X., Fan, X.-J., Lin, Q.-L.: Failure mode and effects analysis using D numbers and grey relational projection method. Expert Syst. Appl. 41(10), 4670–4679 (2014)

    Article  Google Scholar 

  34. Xiao, F.: An intelligent complex event processing with D numbers under fuzzy environment. Math. Probl. Eng. 2016, 1–10 (2016)

    Google Scholar 

  35. Sun, L., Liu, Y., Zhang, B., Shang, Y., Yuan, H., Ma, Z.: An integrated decision-making model for transformer condition assessment using game theory and modified evidence combination extended by D numbers. Energies 9(9), 697 (2016)

    Article  Google Scholar 

  36. Khechadoorian, V., Osanloo, M.: Mined land use selection using a modified version of TOPSIS method, that can handle uncertainty, by accepting inputs as D numbers. In: Proceedings of the Beijing International Symposium Land Reclamation and Ecological Restoration, pp. 625–633 (2014)

  37. Zong, F., Wang, L.: Evaluation of university scientific research ability based on the output of sci-tech papers: a D-AHP approach. PLoS One 12(2), e0171437 (2017)

    Article  Google Scholar 

  38. Xiao, F.: A novel multi-criteria decision making method for assessing health-care waste treatment technologies based on D numbers. Eng. Appl. Artif. Intell. 71(2018), 216–225 (2018)

    Article  Google Scholar 

  39. Li, M., Hu, Y., Zhang, Q., Deng, Y.: A novel distance function of D numbers and its application in product engineering. Eng. Appl. Artif. Intell. 47, 61–67 (2016)

    Article  Google Scholar 

  40. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shafer, G.: A mathematical theory of evidence. Technometrics 20(1), 242 (1978)

    Google Scholar 

  42. Yin, L., Deng, X., Deng, Y.: The negation of a basic probability assignment. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2018.2871756

    Google Scholar 

  43. Xiao, F.: An improved method for combining conflicting evidences based on the similarity measure and belief function entropy. Int. J. Fuzzy Syst. 20(4), 1256–1266 (2018)

    Article  MathSciNet  Google Scholar 

  44. Zhang, H., Deng, Y.: Engine fault diagnosis based on sensor data fusion considering information quality and evidence theory. Adv. Mech. Eng. (2018). https://doi.org/10.1177/1687814018809184

    Google Scholar 

  45. Pan, L., Deng, Y.: A new belief entropy to measure uncertainty of basic probability assignments based on belief function and plausibility function. Entropy 20(11), 842 (2018)

    Article  Google Scholar 

  46. Song, Y., Wang, X., Zhu, J., Lei, L.: Sensor dynamic reliability evaluation based on evidence theory and intuitionistic fuzzy sets. Appl. Intell. 48, 3950–3962 (2018)

    Article  Google Scholar 

  47. Liu, Z.-G., Pan, Q., Dezert, J., Martin, A.: Adaptive imputation of missing values for incomplete pattern classification. Pattern Recognit. 52, 85–95 (2016)

    Article  Google Scholar 

  48. Li, M., Zhang, Q., Deng, Y.: Evidential identification of influential nodes in network of networks. Chaos Solitons Fractals 117, 283–296 (2018)

    Article  MathSciNet  Google Scholar 

  49. Deng, Y.: Deng entropy. Chaos Solitons Fractals 91, 549–553 (2016)

    Article  MATH  Google Scholar 

  50. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mobile Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  51. Yin, L., Deng, Y.: Toward uncertainty of weighted networks: an entropy-based model. Phys. A Stat. Mech. Appl. 508, 176–186 (2018)

    Article  Google Scholar 

  52. Xiao, F.: A hybrid fuzzy soft sets decision making method in medical diagnosis. IEEE Access 6, 25300–25312 (2018)

    Article  Google Scholar 

  53. Li, Y., Deng, Y.: Generalized ordered propositions fusion based on belief entropy. Int. J. Comput. Commun. Control 13(5), 792–807 (2018)

    Article  Google Scholar 

  54. Xiao, F.: Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Inf. Fusion 46(2019), 23–32 (2019)

    Article  Google Scholar 

  55. Yu, L., Lai, K.K.: A distance-based group decision-making methodology for multi-person multi-criteria emergency decision support. Decis. Support Syst. 51(2), 307–315 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The author greatly appreciates the reviews’ suggestions and the editor’s encouragement. This research is supported by the Chongqing Overseas Scholars Innovation Program (No. cx2018077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyuan Xiao.

Ethics declarations

Conflict of interest

Author F. Xiao declares that she has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, F. A Multiple-Criteria Decision-Making Method Based on D Numbers and Belief Entropy. Int. J. Fuzzy Syst. 21, 1144–1153 (2019). https://doi.org/10.1007/s40815-019-00620-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00620-2

Keywords

Navigation