Skip to main content
Log in

A New Perspective of Bayes Formula Based on D–S Theory in Interval Intuitionistic Fuzzy Environment and Its Applications

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Uncertainty inference, which is used to infer the reasons corresponding to the results, has permeated through various fields, such as medicine, risk assessments, and marine management. Tackling ambiguity under fuzzy environment by using the Bayes and Dempster–Shafer theories has recently received special attention. In actual cases and experiments, we can estimate probabilities of occurrence and non-occurrence of events, which are expressed by intuitionistic fuzzy numbers (IFNs) or interval-valued intuitionistic fuzzy numbers (IVIFNs). To accomplish the multi-source uncertain inference in a fuzzy environment, this paper proposes the standard forms of Bayes formula under the intuitionistic fuzzy environment and the interval-valued intuitionistic fuzzy environment to solve grey models and decision-making problems with incomplete information. Firstly, we give some basic properties of IFN-probability and define its conditional probability based on the basic probability assignment of Dempster–Shafer theory. Subsequently, we also propose the independence of events, multiplication rule for the conditional probability of IFNs, and the law of total probability and the Bayes formula of IFNs. Due to the complexity and uncertainty of objective things, the indeterminacy degrees are often difficult to be expressed with crisp numbers. To address the challenge, interval values are used to describe the indeterminacy degrees instead of crisp numbers. Secondly, we give some basic properties of IVIFN-probability and define its conditional probability based on the IFN-probability theory. Afterward, we further propose the independence of events, multiplication rule for the conditional probability of IVIFNs, and the law of total probability and the Bayes formula of IVIFNs. From the angle of modeling and complexity, our approaches are more convenient and feasible than the interval probability method. Meanwhile, the practical applications show the feasibility of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  2. Atanassov, K.T.: Intuitionistic fuzzy-sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Xu, Z.S., Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gener. Syst. 35(4), 417–433 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Xu, Z.S.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15(6), 1179–1187 (2007)

    Article  Google Scholar 

  5. Atanassov, K.T., Gargov, G.: Interval valued intuitionistic fuzzy-sets. Fuzzy Sets Syst. 31(3), 343–349 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atanassov, K.T.: Operators over interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 64(2), 159–174 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xu, Z.S.: Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making. Control Decis. 22(2), 215–219 (2007)

    MathSciNet  Google Scholar 

  8. Zhou, W., Xu, Z.S., Chen, M.H.: Preference relations based on hesitant-intuitionistic fuzzy information and their application in group decision making. Comput. Ind. Eng. 87, 163–175 (2015)

    Article  Google Scholar 

  9. Xia, M.M.: Interval-valued intuitionistic fuzzy matrix games based on Archimedean t-conorm and t-norm. Int. J. Gener. Syst. 47(3), 278–293 (2018)

    Article  MathSciNet  Google Scholar 

  10. Tao, Z.F., Chen, H.Y., Zhou, L.G.: A generalized multiple attributes group decision making approach based on intuitionistic fuzzy sets. Int. J. Fuzzy Syst. 16(2), 184–195 (2014)

    MathSciNet  Google Scholar 

  11. Bharati, S.K., Singh, S.R.: Transportation problem under interval-valued intuitionistic fuzzy environment. Int. J. Fuzzy Syst. 20(5), 1511–1522 (2018)

    Article  Google Scholar 

  12. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1(1), 3–28 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zadeh, L.A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23(2), 421–427 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carlsson, C., Fuller, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets Syst. 122(2), 315–326 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fuller, R., Majlender, N.: On weighted possibilistic mean and variance of fuzzy numbers. Fuzzy Sets Syst. 136(3), 363–374 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grzegorzewski, P. and Mrówka, E.: Probability of intuitionistic fuzzy events. In: Soft Methods in Probability, Statistics and Data Analysis, pp. 105–115 (2002)

  17. Riečan, B.: Representation of Probabilities on IFS Events, vol. 26, pp. 243–248. Springer, Berlin (2004)

    MATH  Google Scholar 

  18. Ciungu, L.C., Riečan, B.: Representation theorem for probabilities on IFS-events. Inf. Sci. 180(5), 793–798 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grzegorzewski, P.: On some basic concepts in probability of IF-events. Inf. Sci. 232, 411–418 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: International Conference on Neural Information Processing Systems, vol. 4, pp. 2951–2959 (2012)

  21. Erte, P., Zhu, H.: Non-parametric Bayesian learning with deep learning structure and its applications in wireless networks. In: Signal Information Processing, pp. 1233–1237 (2014)

  22. Li, B., Han, T., Kang, F.Y.: Fault diagnosis expert system of semiconductor manufacturing equipment using a Bayesian network. Int. J. Comput. Integr. Manuf. 26(12), 1161–1171 (2013)

    Article  Google Scholar 

  23. Wang, X.L., Zang, M., Xiao, G.H.: Epigenetic change detection and pattern recognition via Bayesian hierarchical hidden Markov models. Stat. Med. 32(13), 2292–2307 (2013)

    Article  MathSciNet  Google Scholar 

  24. Ellison, A.M.: Bayesian inference in ecology. Ecol. Lett. 7(6), 509–520 (2004)

    Article  Google Scholar 

  25. Fong, Y., Rue, H., Wakefield, J.: Bayesian inference for generalized linear mixed models. Biostatistics 11(3), 397–412 (2010)

    Article  Google Scholar 

  26. Sun, H., Betti, R.: A hybrid optimization algorithm with Bayesian inference for probabilistic model updating. Comput. Aided Civ. Inf. 30(8), 602–619 (2015)

    Article  Google Scholar 

  27. Khakzad, N., Khan, F., Amyotte, P.: Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches. Reliab. Eng. Syst. Saf. 96(8), 925–932 (2011)

    Article  Google Scholar 

  28. Shahriar, B., Swersky, K., Wang, Z., Adams, R.P., Freitas, N.D.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)

    Article  Google Scholar 

  29. Jia, Y.H., Kwong, S., Wu, W.H.: Sparse Bayesian learning-based Kernel Poisson regression. IEEE Trans. Cybern. 99, 1–13 (2017)

    Google Scholar 

  30. Junttila, V., Laine, M.: Bayesian principal component regression model with spatial effects for forest inventory variables under small field sample size. Remote Sens. Environ. 192, 45–57 (2017)

    Article  Google Scholar 

  31. Ma, F., Chen, Y.W., Yan, X.P.: A novel marine radar targets extraction approach based on sequential images and Bayesian network. Ocean Eng. 120, 64–77 (2016)

    Article  Google Scholar 

  32. Mohammadfam, I., Ghasemi, F., Kalatpour, O.: Constructing a Bayesian network model for improving safety behavior of employees at workplaces. Appl. Ergon. 58, 35–47 (2017)

    Article  Google Scholar 

  33. Malagrino, L.S., Roman, N.T., Monteiro, A.M.: Forecasting stock market index daily direction: a Bayesian network approach. Expert Syst. Appl. 105, 11–22 (2018)

    Article  Google Scholar 

  34. Pouymayou, B., Riesterer, O., Guckenberger, N., Unkelbach, J.: A Bayesian network model of lymphatic tumor progression for personalized elective CTV definition. Med. Phys. 45(6), E150–E150 (2018)

    Google Scholar 

  35. Castelletti, A., Soncini-Sessa, R.: Bayesian networks and participatory modelling in water resource management. Environ. Modell. Softw. 22(8), 1075–1088 (2007)

    Article  Google Scholar 

  36. Zwirglmaier, K., Straub, D., Groth, K.M.: Capturing cognitive causal paths in human reliability analysis with Bayesian network models. Reliab. Eng. Syst. Saf. 158, 117–129 (2017)

    Article  Google Scholar 

  37. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, New Jersey (1976)

    MATH  Google Scholar 

  39. Xu, D.L., Yang, J.B., Wang, Y.M.: The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty. Eur. J. Oper. Res. 174(3), 1914–1943 (2006)

    Article  MATH  Google Scholar 

  40. Zhou, H., Wang, J.Q., Zhang, H.Y., Chen, X.H.: Linguistic hesitant fuzzy multi-criteria decision-making method based on evidential reasoning. Int. J. Syst. Sci. 47(2), 314–327 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Du, Y.W., Wang, Y.M.: Evidence combination rule with contrary support in the evidential reasoning approach. Expert Syst. Appl. 88, 193–204 (2017)

    Article  Google Scholar 

  42. Ye, J.M., Xu, Z.S., Gou, X.J.: Virtual linguistic trust degree and BUM for evidential reasoning for the emergency response assessment of railway stations emergency. Technical report (2018)

  43. Pratama, V.A., Natalia, F.: A Dempster–Shafer approach to an expert system design in diagnosis of febrile disease. In: International Conference on New Media Studies, pp. 62–68 (2017)

  44. Sun, L., Wang, Y.Z.: A multi-attribute fusion approach extending Dempster–Shafer theory for combinatorial-type evidences. Expert Syst. Appl. 96, 218–229 (2018)

    Article  Google Scholar 

  45. Xing, Q.H., Liu, F.X.: Method of determining membership and nonmembership function in intuitionistic fuzzy sets. Control and Decis. 24(3), 393–397 (2009)

    MathSciNet  Google Scholar 

  46. Tessem, B.: Interval probability propagation. Int. J. Approx. Reason. 7(3–4), 95–120 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Weichselberger, K.: The theory of interval-probability as a unifying concept for uncertainty. Int. J. Approx. Reason. 24(2–3), 149–170 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Guo, P.J., Tanaka, H.: Decision making with interval probabilities. Eur. J. Oper. Res. 203(2), 444–454 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Senguptaand, A., Pal, T.K.: On comparing interval numbers. Eur. J. Oper. Res. 127(1), 28–43 (2000)

    Article  MathSciNet  Google Scholar 

  50. Zhou, L.G., Chen, H.Y., Gil-Lafuente, A.M.: Uncertain generalized aggregation operators. Expert Syst. Appl. 39(1), 1105–1117 (2012)

    Article  Google Scholar 

  51. Dempster, A.P., Weisberg, H.: A generalization of Bayesian inference. J. R. Stat. Soc. B 30(2), 205–247 (1968)

    MathSciNet  MATH  Google Scholar 

  52. Shafer, G.: Belief functions and possibility measures. Anal. of Fuzzy Inf. 1, 51–84 (1987)

    MathSciNet  MATH  Google Scholar 

  53. Hong, D.H., Choi, C.H.: Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst. 114(1), 103–113 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported in part by the China National Natural Science Foundation (Nos. 71771155, 71571123), and the Scholarship from China Scholarship Council (No. 201706240012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeshui Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Xu, Z. & Gou, X. A New Perspective of Bayes Formula Based on D–S Theory in Interval Intuitionistic Fuzzy Environment and Its Applications. Int. J. Fuzzy Syst. 21, 1196–1213 (2019). https://doi.org/10.1007/s40815-019-00628-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00628-8

Keywords

Navigation