Skip to main content
Log in

Fuzzy Neural Network-Based Model Predictive Control for Dissolved Oxygen Concentration of WWTPs

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Dissolved oxygen (DO) concentration is a key variable in the operation of wastewater treatment processes (WWTPs). In this paper, an adaptive fuzzy neural network-based model predictive control (AFNN-MPC) is proposed for the control problem of DO concentration. The main contributions of AFNN-MPC are threefolds: First, an AFNN, based on a novel learning method with adaptive learning rate, is designed to model the unknown nonlinearities of WWTPs with high predicting performance. Second, a gradient method is used to solve the optimal control problem of AFNN-MPC to reduce the computational cost. Third, the convergence of AFNN, as well as the stability analysis of AFNN-MPC, has been given in detail. Finally, the proposed AFNN-MPC is applied to the benchmark simulation model No. 2. The promising results indicate that the proposed AFNN-MPC is a suitable solution to control DO concentration. Moreover, the comprehensive experiments clearly show the superiority and efficacy of the proposed AFNN-MPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Behera, C.R., Srinivasan, B., Chandran, K., et al.: Model based predictive control for energy efficient biological nitrification process with minimal nitrous oxide production. Chem. Eng. J. 268, 300–310 (2015)

    Article  Google Scholar 

  2. Nguyen, D., Gadhamshetty, V., Nitayavardhana, S., et al.: Automatic process control in anaerobic digestion technology: a critical review. Bioresour. Technol. 193, 513–522 (2015)

    Article  Google Scholar 

  3. Mulas, M., Tronci, S., Corona, F., et al.: Predictive control of an activated sludge process: an application to the Viikinmäki wastewater treatment plant. J. Process Control 35, 89–100 (2015)

    Article  Google Scholar 

  4. Adyel, T.M., Oldham, C.E., Hipsey, M.R.: Stormwater nutrient attenuation in a constructed wetland with alternating surface and subsurface flow pathways: event to annual dynamics. Water Res. 107, 66–82 (2016)

    Article  Google Scholar 

  5. Diehl, S., Farås, S.: Control of an ideal activated sludge process in wastewater treatment via an ODE–PDE model. J. Process Control 23(3), 38–359 (2013)

    Article  MATH  Google Scholar 

  6. Qiao, M., Qi, W., Liu, H., Qu, J.: Occurrence, behavior and removal of typical substituted and parent polycyclic aromatic hydrocarbons in a biological wastewater treatment plant. Water Res. 52, 11–19 (2014)

    Article  Google Scholar 

  7. Kasmi, M., Hamdi, M., Trabelsi, I.: Ecofriendly process combining physical-chemical and biological technics for the fermented dairy products waste pretreatment and reuse. Water Sci. Technol. 75(1), 39–47 (2017)

    Article  Google Scholar 

  8. Sweetapple, C., Fu, G., Butler, D.: Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions. Water Res. 55, 52–62 (2014)

    Article  Google Scholar 

  9. Santin, I., Pedret, C., Vilanova, R.: Applying variable dissolved oxygen set point in a two level hierarchical control structure to a wastewater treatment process. J. Process Control 28, 40–55 (2015)

    Article  Google Scholar 

  10. Yang, T., Qiu, W., et al.: Fuzzy model-based predictive control of dissolved oxygen in activated sludge processes. Neurocomputing 136, 88–95 (2014)

    Article  Google Scholar 

  11. Lee, C., Howe, K., Thomson, B.: Ozone and biofiltration as an alternative to reverse osmosis for removing PPCPs and micropollutants from treated wastewater. Water Res. 46(4), 1005–1014 (2012)

    Article  Google Scholar 

  12. Aymerich, I., Rieger, L., et al.: The difference between energy consumption and energy cost: modelling energy tariff structures for water resource recovery facilities. Water Res. 81, 113–123 (2015)

    Article  Google Scholar 

  13. Åmand, L., Carlsson, B.: The optimal dissolved oxygen profile in a nitrifying activated sludge process–comparisons with ammonium feedback control. Water Sci. Technol. 68(3), 641–649 (2013)

    Article  Google Scholar 

  14. Alcntara, S., Pedret, C., Vilanova, R.: On the model matching approach to PID design: analytical perspective for robust servo/regulator trade off tuning. J. Process Control 20(5), 596–608 (2010)

    Article  Google Scholar 

  15. Shen, W., Zhu, Y., Long, Z.: Two PID-combined controllers for dissolved oxygen concentration in wastewater treatment process of a paper mill—a simulation study. In: 2016 35th Chinese Control Conference (CCC). IEEE, pp. 8533–8538 (2016)

  16. López-Pérez, P.A., Neria-González, M.I., Aguilar-López, R.: Improvement of activated sludge process using a nonlinear PI controller design via adaptive gain. Int. J. Chem. React. Eng. 14(1), 407–416 (2016)

    Google Scholar 

  17. Samsudin, S., Rahmat, M., et al.: Improvement of activated sludge process using enhanced nonlinear PI controller. Arab. J. Sci. Eng. 39(8), 6575–6586 (2014)

    Article  Google Scholar 

  18. Aouaouda, S., Chadli, M., Khadir, M.T., Bouarar, T.: Robust fault tolerant tracking controller design for unknown inputs TS models with unmeasurable premise variables. J. Process Control 22(5), 861–872 (2012)

    Article  Google Scholar 

  19. Ebadzadeh, M.M., SalimiBadr, A.: CFNN: correlated fuzzy neural network. Neurocomputing 148(1), 430–444 (2015)

    Article  Google Scholar 

  20. Holenda, B., Domokos, E., Redey, A., Fazakas, J.: Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. Comput. Chem. Eng. 32(6), 1270–1278 (2008)

    Article  Google Scholar 

  21. Shen, W., Chen, X., Corriou, J.P.: Application of model predictive control to the BSM1 benchmark of wastewater treatment process. Comput. Chem. Eng. 32(12), 2849–2856 (2008)

    Article  Google Scholar 

  22. Zeng, J., Liu, J.: Economic model predictive control of wastewater treatment processes. Ind. Eng. Chem. Res. 54(21), 5710–5721 (2015)

    Article  Google Scholar 

  23. O’Brien, M., Mack, J., et al.: Model predictive control of an activated sludge process: a case study. Control Eng. Pract. 19(1), 54–61 (2011)

    Article  Google Scholar 

  24. Han, H.G., Qiao, J.F.: Nonlinear model-predictive control for industrial processes: an application to wastewater treatment process. IEEE Trans. Ind. Electron. 61(4), 1970–1982 (2014)

    Article  Google Scholar 

  25. Rashid, M.M., Mhaskar, P., Swartz, C.L.E.: Multi-rate modeling and economic model predictive control of the electric arc furnace. J. Process Control 40, 50–61 (2016)

    Article  Google Scholar 

  26. Rojas, J.D., Flores-Alsina, X., et al.: Application of multivariate virtual reference feedback tuning for wastewater treatment plant control. Control Eng. Pract. 20(5), 499–510 (2012)

    Article  Google Scholar 

  27. Santin, I., Pedret, C., Vilanova, R.: Applying variable dissolved oxygen set point in a two level hierarchical control structure to a wastewater treatment process. J. Process Contr. 28, 40–55 (2015)

    Article  Google Scholar 

  28. Patan, K.: Neural network-based model predictive control: fault tolerance and stability. IEEE Trans. Control Syst. Technol. 23(3), 1147–1155 (2015)

    Article  Google Scholar 

  29. Han, H.G., Qiao, J.F., Chen, Q.L.: Model predictive control of dissolved oxygen concentration based on a self-organizing RBF neural network. Control Eng. Pract. 20(4), 465–476 (2012)

    Article  Google Scholar 

  30. Hagras, H., Alghazzawi, D., Aldabbagh, G.: Employing type-2 fuzzy logic systems in the efforts to realize ambient intelligent environments. IEEE Comput. Intell. Mag. 10(1), 44–51 (2015)

    Article  Google Scholar 

  31. Castro, J.R., Castillo, O., Sanchez, M.A., Mendoza, O., Rodríguez-Diaz, A., Melin, P.: Method for higher order polynomial sugeno fuzzy inference systems. Inf. Sci. 351, 76–89 (2016)

    Article  MATH  Google Scholar 

  32. Castillo, O., Cervantes, L., Soria, J., Sanchez, M., Castro, J.R.: A generalized type-2 fuzzy granular approach with applications to aerospace. Inf. Sci. 354, 165–177 (2016)

    Article  Google Scholar 

  33. Starkey, A., Hagras, H., Shakya, S., Owusu, G.: iPatch: a many-objective type-2 fuzzy logic system for field workforce optimization. IEEE Trans. Fuzzy Syst. 27(3), 502–514 (2019)

    Article  Google Scholar 

  34. Rubaai, A., Young, P.: Hardware/software implementation of fuzzy-neural-network self-learning control methods for brushless DC motor drives. IEEE Trans. Ind. Appl. 52(1), 414–424 (2016)

    Article  Google Scholar 

  35. Lin, C.M., Le, T.L.: PSO-self-organizing interval type-2 fuzzy neural network for antilock braking systems. Int. J. Fuzzy Syst. 19(5), 1–13 (2017)

    MathSciNet  Google Scholar 

  36. Pratama, M., Lu, J., Lughofer, E., Zhang, G., Er, M.J.: An incremental learning of concept drifts using evolving type-2 recurrent fuzzy neural networks. IEEE Trans. Fuzzy Syst. 25(5), 1175–1192 (2017)

    Article  Google Scholar 

  37. Han, H.G., Lin, Z.L., Qiao, J.F.: Modeling of nonlinear systems using the self-organizing fuzzy neural network with adaptive gradient algorithm. Neurocomputing 266(29), 566–578 (2017)

    Article  Google Scholar 

  38. Ebadzadeh, M.M., Salimi-Badr, A.: IC-FNN: a novel fuzzy neural network with interpretable, intuitive, and correlated-contours fuzzy rules for function approximation. IEEE Trans. Fuzzy Syst. 26(3), 1288–1302 (2018)

    Article  Google Scholar 

  39. Han, H.G., Qian, H.H., Qiao, J.F.: Nonlinear multiobjective model-predictive control scheme for wastewater treatment process. J. Process Control 24(3), 47–59 (2014)

    Article  Google Scholar 

  40. Han, H.G., Zhang, L., Hou, Y., Qiao, J.F.: Nonlinear model predictive control based on a self-organizing recurrent neural network. IEEE Trans. Neural Netw. Learn. Syst. 27(2), 402–415 (2016)

    Article  MathSciNet  Google Scholar 

  41. Jeppsson, U., Pons, M.N.: The COST benchmark simulation model-current state and future perspective. Control Eng. Pract. 12(4), 299–304 (2004)

    Article  Google Scholar 

  42. Wu, X.J., Zhu, X.J., Cao, G.Y., Tu, H.Y.: Predictive control of SOFC based on a GA-RBF neural network model. J. Power Sources 179(1), 232–239 (2008)

    Article  Google Scholar 

  43. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5(6), 989–993 (1994)

    Article  Google Scholar 

  44. Ampazis, N., Perantonis, S.J.: Two highly efficient second-order algorithms for training feedforward networks. IEEE Trans. Neural Netw. 13(5), 1064–1074 (2002)

    Article  Google Scholar 

  45. Lu, C.H.: Wavelet fuzzy neural networks for identification and predictive control of dynamic systems. IEEE Trans. Ind. Electron. 58(7), 3046–3058 (2011)

    Article  Google Scholar 

  46. Jeppsson, U., Rosen, C., et al.: Vanrolleghem, Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs. Water Sci. Technol. 53(1), 287–295 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Project under Grants 2018YFC1900800-5, National Science Foundation of China under Grants 61890930-5 and 61622301, Beijing Natural Science Foundation under Grant 4172005 and Major National Science and Technology Project under Grant 2017ZX07104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Gui Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, HG., Liu, Z. & Qiao, JF. Fuzzy Neural Network-Based Model Predictive Control for Dissolved Oxygen Concentration of WWTPs. Int. J. Fuzzy Syst. 21, 1497–1510 (2019). https://doi.org/10.1007/s40815-019-00644-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00644-8

Keywords

Navigation