Skip to main content
Log in

Robust Observer Design and Fuzzy Optimization for Uncertain Dynamic Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

To achieve the state estimation of uncertain nonlinear systems, this paper proposes a novel optimal robust observer via the fuzzy bound information of the uncertainty. A robust observer scheme is first proposed to guarantee the uniform boundedness and uniform ultimate boundedness of the state estimation system regardless of the actual value of the uncertainty. To optimize the observer gain, a fuzzy set-theoretic-based optimal approach is then proposed by utilizing the fuzzy information of the uncertainty bound. The optimization problem is completely solved in analytic form. The resulting observer is able to guarantee the robustness of the state estimation system to the uncertainty, while minimizing an optimization index related to the state estimation performance and the observer cost. The novelty of this research is a creative optimal robust observer design by blending state estimation theory, fuzzy set theory, and optimization theory into an integrated framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Luenberger, D.: Observers for multivariable systems. IEEE Trans. Autom. Control 11(2), 190–197 (1966)

    Article  MathSciNet  Google Scholar 

  2. Chu, H., Gao, B., Gu, W., Chen, H.: Low-speed control for permanent-magnet DC torque motor using observer-based nonlinear triple-step controller. IEEE Trans. Ind. Electron. 64(4), 3286–3296 (2017)

    Article  Google Scholar 

  3. Samadi, M.F., Saif, M.: State-space modeling and observer design of Li–Ion batteries using Takagi–Sugeno fuzzy system. IEEE Trans. Control Syst. Technol. 25(1), 301–308 (2017)

    Article  Google Scholar 

  4. Zhang, K., Jiang, B., Shi, P.: Fault estimation observer design for discrete-time Takagi–Sugeno fuzzy systems based on piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 20(1), 192–200 (2012)

    Article  Google Scholar 

  5. Li, H., Gao, Y., Shi, P., Lam, H.K.: Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity. IEEE Trans. Autom. Control 61(9), 2745–2751 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chadli, M., Karimi, H.R.: Robust observer design for unknown input Takagi–Sugeno models. IEEE Trans. Fuzzy Syst. 21(1), 158–164 (2013)

    Article  Google Scholar 

  7. Lin, Y.P., Lin, C.L., Suebsaiprom, P., Hsieh, S.L.: Estimating evasive acceleration for ballistic targets using an extended state observer. IEEE Trans. Aerosp. Electron. Syst. 52(1), 337–349 (2016)

    Article  Google Scholar 

  8. Li, S., Yang, J., Chen, W.H., Chen, X.: Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Trans. Ind. Electron. 59(12), 4792–4802 (2012)

    Article  Google Scholar 

  9. Nademi, H., Das, A., Norum, L.E.: Modular multilevel converter with an adaptive observer of capacitor voltages. IEEE Trans. Power Electron. 30(1), 235–248 (2015)

    Article  Google Scholar 

  10. Tong, S., Sui, S., Li, Y.: Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained. IEEE Trans. Fuzzy Syst. 23(4), 729–742 (2015)

    Article  Google Scholar 

  11. Comanescu, M.: Design and implementation of a highly robust sensorless sliding mode observer for the flux magnitude of the induction motor. IEEE Trans. Energy Convers. 31(2), 649–657 (2016)

    Article  Google Scholar 

  12. Shi, P., Liu, M., Zhang, L.: Fault-tolerant sliding-mode-observer synthesis of Markovian jump systems using quantized measurements. IEEE Trans. Ind. Electron. 62(9), 5910–5918 (2015)

    Article  Google Scholar 

  13. Barrau, A., Bonnabel, S.: The invariant extended Kalman filter as a stable observer. IEEE Trans. Autom. Control 62(4), 1797–1812 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gdaim, S., Mtibaa, A., Mimouni, M.F.: Enhanced fault-tolerant control of interior PMSMs based on an adaptive EKF for EV traction applications. IEEE Trans. Fuzzy Syst. 23(3), 644–655 (2015)

    Article  Google Scholar 

  15. Mwasilu, F., Jung, J.W.: Observer design for stochastic nonlinear systems via contraction-based incremental stability. IEEE Trans. Power Electron. 31(8), 5746–5758 (2016)

    Article  Google Scholar 

  16. Xu, J.Q., Chen, Y.H., Guo, H.: A new approach to control design for constraint-following for fuzzy mechanical systems. J. Optim. Theory Appl. 165(3), 1022–1049 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  18. Boulkroune, A., Tadjine, M., M’Saad, M., Farza, M.: Design of a unified adaptive fuzzy observer for uncertain nonlinear systems. Inf. Sci. 265(5), 139–153 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, Y., Tong, S., Li, T.: Hybrid fuzzy adaptive output feedback control design for uncertain MIMO nonlinear systems with time-varying delays and input saturation. IEEE Trans. Fuzzy Syst. 24(4), 841–853 (2016)

    Article  Google Scholar 

  20. Li, Y., Sun, K., Tong, S.: Observer-based adaptive fuzzy fault-tolerant optimal control for SISO nonlinear systems. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2017.2785801

    Google Scholar 

  21. He, W., Dong, Y.: Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1174–1186 (2018)

    Article  Google Scholar 

  22. Yeh, S.J., Chang, W., Wang, W.J.: Unknown input based observer synthesis for uncertain Takagi–Sugeno fuzzy systems. IET Contrpl Theory Appl. 9(5), 729–735 (2015)

    Article  Google Scholar 

  23. Corless, M., Tu, J.: State and input estimation for a class of uncertain systems. Automatica 34(6), 757–764 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hui, S., Zak, S.H.: Observer design for systems with unknown inputs. Int. J. Appl. Math. Comput. Sci. 15(4), 431–446 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Klir, J.G., Yuan, B.: Fuzzy Sets and Fuzzy Logic Theory and Applications. Prentice Hall, New York (1995)

    MATH  Google Scholar 

  26. Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice Hall, New York (1997)

    MATH  Google Scholar 

  27. Corless, M.: Control of uncertain nonlinear systems. J. Dyn. Syst. Meas. Control 115(115), 362–372 (1993)

    Article  MATH  Google Scholar 

  28. Leitmann, G.: One approach to the control of uncertain dynamical systems. Appl. Math. Comput. 70(2), 261–272 (1995)

    MathSciNet  MATH  Google Scholar 

  29. Corless, M., Leitmann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Autom. Control 26(5), 1139–1144 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chen, Y.H.: On the deterministic performance of uncertain dynamical systems. Int. J. Control 43(5), 1557–1579 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. Khalil, H.K.: Nonlinear Systems. Prentice Hall International Inc, Upper Saddle River (2002)

    MATH  Google Scholar 

  32. Hale, J.K.: Ordinary Differential Equations. Wiley, New York (1969)

    MATH  Google Scholar 

  33. Chen, Y.H.: A new approach to the control design of fuzzy dynamical systems. J. Dyn. Syst. Meas. Control 133(6), 061019 (2011)

    Article  Google Scholar 

  34. Bronshtein, I.N., Semendyayev, K.A.: Handbook of Mathematics. Van Nostrand Reinhold, New York (1985)

    MATH  Google Scholar 

  35. Hwang, C.L., Hsu, J.C.: Nonlinear control design for a Hammerstein model system. IEE Proc. Control Theory Appl. 142(4), 277–285 (1995)

    Article  MATH  Google Scholar 

  36. Chen, Y.H.: Performance analysis of controlled uncertain system. Dyn. Control 6(2), 131–142 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 51707004), Aeronautical Science Foundation of China (Grant No. 2016ZC51025), the Fundamental Research Funds for the Central Universities (Grant No. YWF19BJJ183), and Shanghai Aerospace Science and Technology Innovation Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Guo.

Appendix: Mathematical Preliminary About Differential Inequality

Appendix: Mathematical Preliminary About Differential Inequality

Definition 2

(see [32]) Let \(\omega (\psi ,t)\) be a scalar function of the scalars \(\psi\), t in some open connected set \({\mathcal {D}}\). The function \(\psi (t)\), \(t\in [t_0,{\bar{t}}]\), is called the solution of the differential inequality

$$\begin{aligned} {{\dot{\psi }}}(t)\le \omega (\psi (t),t), \end{aligned}$$
(78)

on \([t_0,{\bar{t}}]\) when \(\psi (t)\) is a continuous function on \([t_0,{\bar{t}}]\) and \({\dot{\psi }}(t)\) should meet the inequality (78).

Theorem 3

(see [32]) Let\(\omega (\phi ,t)\)be continuous on an open connected set\({\mathcal {D}}\in \mathbf{R }^2\)and such that the initial value problem for the scalar equation

$$\begin{aligned} {\dot{\phi }}(t)=\omega (\phi (t),t),\ \ \ \ \phi (t_0)=\phi _0 \end{aligned}$$
(79)

has a unique solution. If\(\phi (t)\)and\(\psi (t)\)are the solution of (79) and (78) on\(t_0\le t\le {\bar{t}}\), respectively, and\(\psi (t_0)\le \phi (t_0)\), then for each\(t\in [t_0, {\bar{t}}]\), \(\psi (t)\le \phi (t)\).

Remark

Due to the uniqueness of the solution to (79), this theorem implies the feasibility of exploring the upper bound of the solution to the differential inequality (78).

Theorem 4

(see [36]) Consider the differential inequality (78) and the differential equation (79). Let\(\omega (\cdot )\)denote a continuous function satisfying theLipschitz condition

$$\begin{aligned} \left| \omega (\nu _1,t)-\omega (\nu _2,t)\right| \le L\left| \nu _1-\nu _2\right| , \end{aligned}$$
(80)

for all points\((\nu _1,t),(\nu _2,t)\in {\mathcal {D}}\)and the constant\(L>0\). For each\(t\in [t_0, {\bar{t}}]\), the function\(\psi (t)\)meet the following inequality

$$\begin{aligned} \psi (t)\le \phi (t), \end{aligned}$$
(81)

if\(\psi (t)\)meets the inequality (78).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Fang, H., Zeng, F. et al. Robust Observer Design and Fuzzy Optimization for Uncertain Dynamic Systems. Int. J. Fuzzy Syst. 21, 1511–1523 (2019). https://doi.org/10.1007/s40815-019-00646-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00646-6

Keywords

Navigation