Skip to main content
Log in

Backstepping-Based Adaptive Fuzzy Synchronization Control for a Class of Fractional-Order Chaotic Systems with Input Saturation

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In existing backstepping control schemes of fractional-order systems, either using the optional control method or ignoring the fractional-order derivatives of command functions as the analytic calculation of virtual controllers makes the operation becoming prohibitive. This paper proposes an adaptive fuzzy backstepping synchronization control method for a class of factional-order chaotic systems with input saturation and unknown external disturbance, where the fractional-order derivative of the virtual control function is treated as a part of an unknown function. During the backstepping design, the unknown function is approximated by a fuzzy logic system in each step. Then, by using the fractional Lyapunov stability criterion, asymptomatic convergence of the synchronization error can be guaranteed by the proposed control method. Three numerical simulation results confirm the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang, J., Wang, J.: Numerical analysis for Navier–Stokes equations with time fractional derivatives. Appl. Math. Comput. 336, 481–489 (2018)

    Article  MathSciNet  Google Scholar 

  2. Yan, F., Zuo, M., Hao, X.: Positive solution for a fractional singular boundary value problem with p-Laplacian operator. Bound. Value Probl. 2018(1), 51 (2018)

    Article  MathSciNet  Google Scholar 

  3. Liu, H., Li, S., Cao, J., Li, G., Alsaedi, A., Alsaadi, F.E.: Adaptive fuzzy prescribed performance controller design for a class of uncertain fractional-order nonlinear systems with external disturbances. Neurocomputing 219, 422–430 (2017)

    Article  Google Scholar 

  4. Pan, I., Das, S.: Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Trans. 62, 19–29 (2016)

    Article  Google Scholar 

  5. Angulo, J., Ruiz-Medina, M., Anh, V., Grecksch, W.: Fractional diffusion and fractional heat equation. Adv. Appl. Probab. 32(4), 1077–1099 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Redding (2006)

    Google Scholar 

  7. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  8. Feng, Q., Meng, F.: Traveling wave solutions for fractional partial differential equations arising in mathematical physics by an improved fractional Jacobi elliptic equation method. Math. Methods Appl. Sci. 40(10), 3676–3686 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Yuan, Y., Zhao, S.-L.: Mixed two- and eight-level fractional factorial split-plot designs containing clear effects. Acta Mathematicae Applicatae Sinica, English Series 32(4), 995–1004 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Xu, R., Zhang, Y.: Generalized Gronwall fractional summation inequalities and their applications. J. Inequal. Appl. 2015(1), 242 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, J., Yuan, Y., Zhao, S.: Fractional factorial split-plot designs with two-and four-level factors containing clear effects. Commun. Stat. Theory Methods 44(4), 671–682 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, X., Liu, L., Wu, Y.: The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl. Math. Lett. 37, 26–33 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shukla, M.K., Sharma, B.: Backstepping based stabilization and synchronization of a class of fractional-order chaotic systems. Chaos Solitons Fractals 102, 274–284 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pan, Y., Yu, H.: Biomimetic hybrid feedback feedforward neural-network learning control. IEEE Trans. Neural Netw. Learn. Syst. 28(6), 1481–1487 (2017)

    Article  Google Scholar 

  15. Pan, Y., Yang, C., Pan, L., Yu, H.: Integral sliding mode control: performance, modification, and improvement. IEEE Trans. Industr. Inform. 14(7), 3087–3096 (2018)

    Article  Google Scholar 

  16. Liu, H., Li, S., Wang, H., Sun, Y.: Adaptive fuzzy control for a class of unknown fractional-order neural networks subject to input nonlinearities and dead zones. Inf. Sci. 454, 30–45 (2018)

    Article  MathSciNet  Google Scholar 

  17. Li, Y., Tong, S., Li, T.: Hybrid fuzzy adaptive output feedback control design for uncertain MIMO nonlinear systems with time varying delays and input saturation. IEEE Trans. Fuzzy Syst. 24(4), 841–853 (2016)

    Article  Google Scholar 

  18. Liu, Y., Gong, M., Tong, S., Chen, C.P., Li, D.: Adaptive fuzzy output feedback control for a class of nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. 26(5), 2607–2617 (2018)

    Article  Google Scholar 

  19. Liu, Y., Tong, S.: Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems. Automatica 76, 143–152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Boulkroune, A.: A fuzzy adaptive control approach for nonlinear systems with unknown control gain sign. Neurocomputing 179, 318–325 (2016)

    Article  Google Scholar 

  21. Pan, Y., Wang, H., Li, X., Yu, H.: Adaptive command filtered backstepping control of robot arms with compliant actuators. IEEE Trans. Control Syst. Technol. 26(3), 1149–1156 (2018)

    Article  Google Scholar 

  22. Kwan, C., Lewis, F.L.: Robust backstepping control of nonlinear systems using neural networks. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 30(6), 753–766 (2000)

    Article  Google Scholar 

  23. Li, H., Wang, L., Du, H., Boulkroune, A.: Adaptive fuzzy backstepping tracking control for strict feedback systems with input delay. IEEE Trans. Fuzzy Syst. 25(3), 642–652 (2017)

    Article  Google Scholar 

  24. Sui, S., Chen, C.P., Tong, S.: Fuzzy adaptive finite-time control design for nontriangular stochastic nonlinear systems. IEEE Trans. Fuzzy Syst. 27(1), 172–184 (2019)

    Article  Google Scholar 

  25. Wang, H., Liu, W., Qiu, J., Liu, P.X.: Adaptive fuzzy decentralized control for a class of strong interconnected nonlinear systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 26(2), 836–846 (2018)

    Article  Google Scholar 

  26. Sui, S., Chen, C.P., Tong, S.: Neural network filtering control design for nontriangular structure switched nonlinear systems in finite time. IEEE Trans. Neural Netw. Learn. Syst. (2018). https://doi.org/10.1109/TNNLS.2018.2876352

    Google Scholar 

  27. Wang, H., Liu, X., Liu, K., Karimi, H.R.: Approximation-based adaptive fuzzy tracking control for a class of nonstrict-feedback stochastic nonlinear time-delay systems. IEEE Trans. Fuzzy Syst. 23(5), 1746–1760 (2015)

    Article  Google Scholar 

  28. Farrell, J.A., Polycarpou, M., Sharma, M., Dong, W.: Command filtered backstepping. IEEE Trans. Automat. Contr. 54(6), 1391–1395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dong, W., Farrell, J.A., Polycarpou, M.M., Djapic, V., Sharma, M.: Command filtered adaptive backstepping. IEEE Trans. Control Syst. Technol. 20(3), 566–580 (2012)

    Article  Google Scholar 

  30. Li, Y., Tong, S.: Command filtered based fuzzy adaptive control design for MIMO switched nonstrict feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 47(4), 1007–1016 (2017)

    Google Scholar 

  31. Delavari, H., Heydarinejad, H.: Fractional-order backstepping sliding mode control based on fractional-order nonlinear disturbance observer. J. Comput. Nonlinear Dyn. 13(11), 111009 (2018)

    Article  Google Scholar 

  32. Shukla, M.K., Mahajan, A., Siva, D., Sharma, B.: Secure communication using backstepping based synchronization of fractional-order nonlinear systems. In: 2018 International Conference on Intelligent Circuits and Systems (ICICS), pp. 382–387, IEEE (2018)

  33. Wei, Y., Chen, Y., Liang, S., Wang, Y.: A novel algorithm on adaptive backstepping control of fractional-order systems. Neurocomputing 165, 395–402 (2015)

    Article  Google Scholar 

  34. Liu, H., Pan, Y., Li, S., Chen, Y.: Adaptive fuzzy backstepping control of fractional-order nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2209–2217 (2017)

    Article  Google Scholar 

  35. Sun, W., Peng, L.: Observer-based robust adaptive control for uncertain stochastic Hamiltonian systems with state and input delays. Nonlinear Anal. Model. Control 19(4), 626–645 (2014)

    Article  MathSciNet  Google Scholar 

  36. Sun, W.W.: Stabilization analysis of time-delay Hamiltonian systems in the presence of saturation. Appl. Math. Comput. 217(23), 9625–9634 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Hao, X., Zuo, M., Liu, L.: Multiple positive solutions for a system of impulsive integral boundary value problems with sign-changing nonlinearities. Appl. Math. Lett. 82, 24–31 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rajagopal, K., Karthikeyan, A., Srinivasan, A.K.: FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization. Nonlinear Dyn. 87(4), 2281–2304 (2017)

    Article  Google Scholar 

  39. Azar, A.T., Serranot, F.E., Vaidyanathan, S.: Sliding mode stabilization and synchronization of fractional-order complex chaotic and hyperchaotic systems. In: Mathematical Techniques of Fractional Order Systems, pp. 283–317. Elsevier (2018)

  40. Peng, Z., Wang, J., Han, Q.-L.: Path-following control of autonomous underwater vehicles subject to velocity and input constraints via neurodynamic optimization. IEEE Trans. Industr. Electron. (2018). https://doi.org/10.1109/TIE.2018.2885726

    Google Scholar 

  41. Peng, Z., Wang, J., Wang, J.: Constrained control of autonomous underwater vehicles based on command optimization and disturbance estimation. IEEE Trans. Industr. Electron. 66(5), 3627–3635 (2019)

    Article  Google Scholar 

  42. Wang, H., Chen, B., Liu, X., Liu, K., Lin, C.: Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints. IEEE Trans. Cybern. 43(6), 2093–2104 (2013)

    Article  Google Scholar 

  43. Li, Y., Tong, S., Li, T.: Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation. IEEE Trans. Cybern. 45(10), 2299–2308 (2015)

    Article  Google Scholar 

  44. Zhou, Q., Wang, L., Wu, C., Li, H., Du, H.: Adaptive fuzzy control for nonstrict feedback systems with input saturation and output constraint. IEEE Trans. Syst. Man Cybern Syst. 47(1), 1–12 (2017)

    Article  Google Scholar 

  45. Yakoubi, K., Chitour, Y.: Linear systems subject to input saturation and time delay: global asymptotic stabilization. IEEE Trans. Automat. Contr. 52(5), 874–879 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sun, W.: Stabilization analysis of time delay Hamiltonian systems in the presence of saturation. Appl. Math. Comput. 217(23), 9625–9634 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Xu, S., Sun, G., Ma, Z., Li, X.: Fractional-order fuzzy sliding mode control for the deployment of tethered satellite system under input saturation. IEEE Trans. Aerosp. Electron Syst. 55(2), 747–756 (2018)

    Article  Google Scholar 

  48. Aghababa, M.P., Aghababa, H.P.: The rich dynamics of fractional-order gyros applying a fractional controller. Proc. Inst. Mech. Eng. I J. Syst. Control Eng. 227(7), 588–601 (2013)

    MATH  Google Scholar 

  49. Lu, J.: Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons Fractals 26(4), 1125–1133 (2005)

    Article  MATH  Google Scholar 

  50. Li, C., Deng, W.: Remarks on fractional derivates. Appl. Math. Comput. 187(9), 777–784 (2007)

    MathSciNet  MATH  Google Scholar 

  51. Li, Y., Chen, Y., Podlubny, I.: Mittag–Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang, L.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  53. Wang, Y., Cao, L., Zhang, S., Hu, X., Yu, F.: Command filtered adaptive fuzzy backstepping control method of uncertain non-linear systems. IET Control Theory Appl. 10(10), 1134–1141 (2016)

    Article  MathSciNet  Google Scholar 

  54. Peng, Z., Wang, D., Wang, J.: Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2156–2167 (2017)

    MathSciNet  Google Scholar 

  55. Guo, Y.: Exponential stability analysis of travelling waves solutions for nonlinear delayed cellular neural networks. Dyn. Syst. 32(4), 490–503 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11771263 and 11701320), the Shandong Provincial Natural Science Foundation of China (Grant No. ZR2016AM04), the Natural Science Foundation of Anhui Province of China (Grant No. 1808085MF181), and the Natural Science Foundation of Huainan Normal University (Grant No. 2017xj84).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, S., Liu, H., Li, S. et al. Backstepping-Based Adaptive Fuzzy Synchronization Control for a Class of Fractional-Order Chaotic Systems with Input Saturation. Int. J. Fuzzy Syst. 21, 1571–1584 (2019). https://doi.org/10.1007/s40815-019-00663-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00663-5

Keywords

Navigation