Skip to main content
Log in

Double Closed-Loop General Type-2 Fuzzy Sliding Model Control for Trajectory Tracking of Wheeled Mobile Robots

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, a double-loop control scheme, combining general type-2 fuzzy logic controller (GT2FLC) and non-singular terminal sliding mode control (NTSMC), is proposed to stabilize the non-holonomic wheeled mobile robot. In the double-loop tracking controller, the outer ring adopts the exponential approach law used to track the position state quickly and the inner ring adopts the double-power approaching law, which makes the attitude convergence faster than the position to ensure the stability of the closed-loop system and deal with the random disturbances. NTSMC is designed for both loops to achieve fast convergence of the system in a finite time. The GT2FLC is used to adjust the gain of the approaching law, so as to enhance the adaptability to random disturbances and weaken the chattering of sliding mode input. The simulation results show that the proposed method can achieve small error and fast tracking of position and attitude under random disturbance, and its performance is better than other controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Emre, U., Nagai, Y.K., Erol, S.H.: Staged development of robot skills: behavior formation, affordance learning and imitation with motionese. IEEE Trans. Auton. Ment. Dev. 7, 119–139 (2015)

    Article  Google Scholar 

  2. Huang, D.W., Zhai, J.Y., Ai, W.Q., et al.: Disturbance observer-based robust control for trajectory tracking of wheeled mobile robots. Neurocomputing 198, 74–79 (2016)

    Article  Google Scholar 

  3. Slaugter, D.C., Giles, D.K., Downey, D.: Autonomous robotic weed control systems: a review. Comput. Electron. Agric. 61, 63–78 (2008)

    Article  Google Scholar 

  4. Zhao, X.P., Yang, S.C., Wen, G.G., et al.: Adaptive distributed formation control for multiple nonholonomic wheeled mobile robots. Neurocomputing 173, 1485–1494 (2016)

    Article  Google Scholar 

  5. Meng, X.D., Gao, F., Wu, S.F., et al.: Type synthesis of parallel robotic mechanisms: framework and brief review. Mech. Mach. Theory 78, 177–186 (2014)

    Article  Google Scholar 

  6. Tab, M., Wang, S.: Research progress in robotics. Acta Autom. Sin. 39(7), 1119–1128 (2013)

    Google Scholar 

  7. Lu, S.Y., Zhang, Y., Li, J.X.: Application of mobile robot in high voltage substation. High Volt. Eng. 43(1), 276–284 (2017)

    Google Scholar 

  8. Zhou, K.: Mobile manipulator is coming to aerospace manufacturing industry. In: 2014 IEEE International Symposium on Robotic and Sensors Environments (ROSE) Proceedings, Timisoara, 2014, pp. 94–99

  9. Guo, X., Lu, H.: Recent development of forest industrial robot in china. In: International Conference on Intelligent Computation Technology and Automation. IEEE (2010)

  10. Fierro, R., Lewis, F.L.: Control of a nonholonomic mobile robot using neural networks. IEEE Trans. Neural Netw. 9(4), 589–600 (1998)

    Article  Google Scholar 

  11. Yang, Y., Wang, H., Liu, Y., et al.: The kinematic analysis and simulation for four-wheel independent drive mobile robot. In: Proceedings of the 30th Chinese Control Conference, Yantai, 2011, pp. 3958–3963

  12. Wang, Z.Y., Li, Y.D., Liu, T., et al.: Dynamic control of mobile robots based on an adaptive fuzzy sliding mode. J. Harbin Inst. Technol. 32(06), 792–799 (2011)

    Google Scholar 

  13. Li, Y.Y., Karimi, H.R., Ahn, K.C., et al.: Optimal residual generation for fault detection in linear discrete time-varying systems with uncertain observations. J. Frankl. Inst. 355(7), 3330–3353 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhao, D., Ding, S.X., Karimi, H.R., et al.: On robust Kalman filter for two-dimensional uncertain linear discrete time-varying systems: a least squares method. Automatica 99, 203–212 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Y.Y., Karimi, H.R., Zhong, M.Y., et al.: Fault detection for linear discrete time-varying systems with multiplicative noise: the finite-horizon case. IEEE Trans. Circuits Syst. I Regul. Pap. 65(10), 3492–3505 (2018)

    Article  MathSciNet  Google Scholar 

  16. Park, B.S., Yoo, S.J., Park, J.B., et al.: Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Trans. Control Syst. Technol. 17(1), 207–214 (2009)

    Article  Google Scholar 

  17. Becerra, H.M.: A sliding-mode-control law for mobile robots based on epipolar visual servoing from three views. IEEE Trans. Robot. 27, 175–183 (2011)

    Article  Google Scholar 

  18. Kui, Q.: Path planning for mobile robot based on adaptive fuzzy neural network. J. Southeast Univ. 42(4), 637–642 (2012)

    Google Scholar 

  19. Sato, M., Ishii, K.: A neural network based controller for a wheel type mobile robot. Int. Congr. Ser. 1291(1), 261–264 (2006)

    Article  Google Scholar 

  20. Ye, J.: Adaptive control of nonlinear PID-based analog neural networks for a nonholonomic mobile robot. Neurocomputing 71(7–9), 1561–1565 (2008)

    Article  Google Scholar 

  21. Zhang, S.Y., Shen, Y.K., Cui, W.S.: The path planning control of a mobile robot based on fuzzy and fuzzy adaptive PID. Appl. Mech. Mater. 5, 713–715 (2015)

    Google Scholar 

  22. Ke, H.S., Ye, X.D., Qian, J.H.: Design of robust adaptive controller for mobile robot. J. Zhejiang Univ. 40(7), 1127–1131 (2006)

    MATH  Google Scholar 

  23. Li, Y., Liu, L., Feng, G.: Robust adaptive output feedback control to a class of non-triangular stochastic nonlinear systems. Automatica 89, 325–332 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, X.J., Yang, G.H.: Fault detection in finite frequency domain for Takagi–Sugeno fuzzy systems with sensor faults. IEEE Trans. Cybern. 44(8), 1446–1458 (2014)

    Article  Google Scholar 

  25. Zhao, T., Dian, S.: State feedback control for interval type-2 fuzzy systems with time-varying delay and unreliable communication links. IEEE Trans. Fuzzy Syst. 26(2), 951–966 (2018)

    Article  Google Scholar 

  26. Zhao, T., Huang, M., Dian, S.: Stability and stabilization of T–S fuzzy systems with two additive time-varying delays. Inf. Sci. 494, 174–192 (2019)

    Article  Google Scholar 

  27. Xie, X., Yue, D., Park, J.H., et al.: Relaxed fuzzy observer design of discrete-time nonlinear systems via two effective technical measures. IEEE Trans. Fuzzy Syst. 26(5), 2833–2845 (2018)

    Article  Google Scholar 

  28. Su, X., Xia, F., Liu, J., et al.: Event-triggered fuzzy control of nonlinear systems with its application to inverted pendulum systems. Automatica 94, 236–248 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhao, T., Liu, J., Dian, S.: Finite-time control for interval type-2 fuzzy time-delay systems with norm-bounded uncertainties and limited communication capacity. Inf. Sci. 483, 153–173 (2019)

    Article  MathSciNet  Google Scholar 

  30. Wang, L.K., Lam, H.K.: A new approach to stability and stabilization analysis for continuous-time Takagi–Sugeno fuzzy systems with time delay. IEEE Trans. Fuzzy Syst. 26(4), 2460–2465 (2018)

    Article  Google Scholar 

  31. Zhao, T., Dian, S.: Delay-dependent stabilization of discrete-time interval type-2 T–S fuzzy systems with time-varying delay. J. Frankl. Inst. 354(3), 1542–1567 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Castillo, O., Melin, P.: A review on the design and optimization of interval type-2 fuzzy controllers. Appl. Soft Comput. 12(4), 1267–1278 (2012)

    Article  Google Scholar 

  33. Li, H., Gao, Y., Shi, P., et al.: Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity. IEEE Trans. Autom. Control 61(9), 2745–2751 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liaw, H.C., Shirinzadeh, B.S., Smith, J.L.: Sliding-mode enhanced adaptive motion tracking control of piezoelectric actuation systems for micro/nano manipulation. IEEE Trans. Control Syst. Technol. 16, 826–833 (2008)

    Article  Google Scholar 

  35. Fan, Q.Y., Yang, G.H.: Adaptive actor-critic design-based integral sliding-mode control for partially unknown nonlinear systems with input disturbances. IEEE Trans. Neural Netw. Learn. Syst. 27, 165–177 (2016)

    Article  MathSciNet  Google Scholar 

  36. Lu, X., Zhang, X., Zhang, G., et al.: Design of adaptive sliding mode controller for four-Mecanum wheel mobile robot. In: 2018 37th Chinese Control Conference (CCC), Wuhan, pp. 3983–3987 (2018)

  37. Mallem, A., Nourredine, S., Benaziza, W.: Mobile robot trajectory tracking using PID fast terminal sliding mode inverse dynamic Control. In: 2016 4th International Conference on Control Engineering and Information Technology (CEIT), Hammamet, pp. 1–6 (2016)

  38. Liu, J.K.: Design and MATLAB Simulink for Robot Control System. Tsinghua University Press, Beijing (2008)

    Google Scholar 

  39. Bertrand, S., Nicolas, G.N., Hamel, T., et al.: A hierarchical controller for miniature VTOL UAVs: design and stability analysis using singular perturbation theory. Control Eng. Pract. 19(10), 1099–1108 (2011)

    Article  Google Scholar 

  40. Jankovic, M., Sepulchre, R., Kokotovic, P.: Constructive Lyapunov stabilization of nonlinear cascade systems. IEEE Trans. Autom. Control 41(12), 1723–1735 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ailon, A.: Simple tracking controllers for autonomous VTOL aircraft with bounded inputs. IEEE Trans. Autom. Control 55(3), 737–743 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ailon, A., Zohar, I.: Controllers for trajectory tracking and string-like formation in Wheeled Mobile Robots with bounded inputs R. In: Melecon 2010–2010 15th IEEE Mediterranean Electrotechnical Conference, Valletta. pp. 1563–1568 (2010)

  43. Liu, F.: An efficient centroid type-reduction strategy for general type-2 fuzzy logic system. Inf. Sci. 178(9), 2224–2236 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by the National Key R&D Program of China (2018YFB1307401) and the National Natural Science Foundation of China (61703291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dian, S., Han, J., Guo, R. et al. Double Closed-Loop General Type-2 Fuzzy Sliding Model Control for Trajectory Tracking of Wheeled Mobile Robots. Int. J. Fuzzy Syst. 21, 2032–2042 (2019). https://doi.org/10.1007/s40815-019-00685-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00685-z

Keywords

Navigation