Skip to main content

Advertisement

Log in

Dissipativity-Based Non-fragile Sampled-Data Control for Fuzzy Markovian Jump Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this chapter, the problem of dissipativity analysis and non-fragile sampled-data control is investigated for fuzzy Markovian jump systems. Firstly, based on the mode-dependent Lyapunov function consisting of a two-sided closed-loop function where the information of both intervals \(x(t_{k})\) to x(t) and x(t) to \(x(t_{k+1})\) is well utilized, the stochastically stable criteria and strictly (\({\mathcal {Q}}\),\({\mathcal {S}}\),\({\mathcal {R}}\))-\(\gamma\)-dissipative criteria are proposed in the form of linear matrix inequalities. And then, according to the strictly dissipativity criteria, a non-fragile controller with state feedback is considered for the studied systems. Finally, a truck–trailer model is given to demonstrate the efficiency of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li, H., Wang, Y., Yao, D., Lu, R.: \(h_{\infty }\) A sliding mode approach to stabilization of nonlinear Markovian jump singularly perturbed systems. Automatica 97, 404–413 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Xia, J., Chen, G., Sun, W.: Extended dissipative analysis of generalized Markovian switching neural networks with two delay components. Neurocomputing 260, 275–283 (2017)

    Article  Google Scholar 

  3. Zhuang, G., Xu, S., Xia, J., Ma, Q., Zhang, Z.: Non-fragile delay feedback control for neutral stochastic Markovian jump systems with time-varying delays. Appl. Math. Comput. 355, 21–32 (2019)

    MathSciNet  Google Scholar 

  4. Zhuang, G., Ma, Q., Zhang, B., Xu, S., Xia, J.: Admissibility and stabilization of stochastic singular Markovian jump systems with time delays. Syst. Control Lett. 114, 1–10 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhuang, G., Xu, S., Zhang, B., Xu, H., Chu, Y.: Robust \(h_{\infty }\) deconvolution filtering for uncertain singular Markovian jump systems with time-varying delays. Int. J. Robust Nonlinear Control 26(12), 2564–2585 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Shen, H., Li, F., Xu, S., Sreeram, V.: Slow state variables feedback stabilization for semi-Markov jump systems with singular perturbations. IEEE Trans. Autom. Control 63(8), 2709–2714 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Shen, H., Huo, S., Cao, J., Huang, T.: Generalized state estimation for Markovian coupled networks under round-robin protocol and redundant channels. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2799929

    Google Scholar 

  8. Zhang, L., Liang, H., Sun, Y., Ahh, C.K.: Adaptive event-triggered fault detection for semi-Markovian jump systems with output quantization. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2912846

    Google Scholar 

  9. Shen, H., Li, F., Yan, H., Karimi, H., Lam, H.: Finite-time event-triggered \(h_{\infty }\) control for T-S fuzzy Markov jump systems. IEEE Trans. Fuzzy Syst. 26(5), 3122–3135 (2018)

    Article  Google Scholar 

  10. Blair, W.P., Sworder, D.D.: Feedback control of a class of linear discrete systems with jump parameters and quadratic cost criteria. Int. J. Control 21(5), 833–841 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Song, X., Wang, M., Song, S., Wang, Z.: Intermitment pining synchronization of reaction-diffusion neural networks with multiple spatial diffusion coupling. Neural Comput. Appl. (2019). https://doi.org/10.1007/s0051-019-04254-1.

    Google Scholar 

  12. Li, L., Ugrinovskii, V.A., Orsi, R.: Decentralized robust control of uncertain Markov jump parameter systems via output feedback. Automatica 43, 1932–1944 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Abdollahi, F., Khorasani, K.: A decentralized Markovian jump \(H_{\infty }\) control routing strategy for mobile multi-agent networked systems. IEEE Trans. Circuits Syst. II 19(2), 269–283 (2011)

    Google Scholar 

  14. Chen, G., Xia, J., Zhuang, G.: Delay-dependent stability and dissipativity analysis of generalized neural networks with Markovian jump parameters and two delay components. J. Frankl. Inst. 353(9), 2137–2158 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Costa, O.L.V., Fragoso, M.D., Todorov, M.G.: Continuous-Time Markov Jump Linear Systems. Springer, New York (2013)

    Book  MATH  Google Scholar 

  16. Park, J.M., Park, P.G.: Sampled-data control for continuous-time Markovian jump linear systems via a fragmented-delay state and its state-space model. J. Frankl. Inst. (2019). https://doi.org/10.1016/j.jfranklin.2019.02.033

    MathSciNet  MATH  Google Scholar 

  17. Wu, Z., Shi, P., Su, H., Chu, J.: Asynchronous \(l_{2}-l_{\infty }\) filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities. Automatica 51(1), 180–186 (2014)

    Article  MATH  Google Scholar 

  18. Zhang, B., Zheng, W., Xu, S.: \(h_{\infty }\) filtering of Markovian jump delay systems based on a new performance index. IEEE Trans. Circuits Syst. I Reg. Pap. 60(5), 1250–1263 (2013)

    Article  Google Scholar 

  19. Xia, J., Zhang, J., Sun, W., Zhang, B., Wang, Z.: Finite-time adaptive fuzzy control for nonlinear systems with full state constraints. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2854770

    Google Scholar 

  20. Xia, J., Zhang, J., Feng, J., Wang, Z., Zhuang, G.: Command filter-based adaptive fuzzy control for nonlinear systems with unknown control directions. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2911115

    Google Scholar 

  21. Zhang, J., Xia, J., Sun, W., Zhuang, G., Wang, Z.: Finite-time tracking control for stochastic nonlinear systems with full state constraints. Appl. Math. Comput. 338, 207–220 (2018)

    Article  MathSciNet  Google Scholar 

  22. Sun, W., Su, S., Xia, J., Wu, Y.: Adaptive tracking control of wheeled inverted pendulums with periodic disturbances. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2884707

    Google Scholar 

  23. Sun, W., Su, S., Wu, Y., Xia, J., Nguyen, V.: Adaptive fuzzy control with high-order barrier Lyapunov functions for high-order uncertain nonlinear systems with full-state constraints. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2890256

    Google Scholar 

  24. Sun, W., Su, S., Xia, J., Nguyen, V.: Adaptive fuzzy tracking control of flexible-joint robots with full-state constraints. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2870642

    Google Scholar 

  25. Sun, W., Su, S., Dong, G., Bai, W.: Reduced adaptive fuzzy tracking control for high-order stochastic nonstrict feedback nonlinear system with full-state constraints. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2898204

    Google Scholar 

  26. Gao, H., Chen, T.: Stabilization of nonlinear systems under variable sampling: a fuzzy control approach. IEEE Trans. Fuzzy Syst. 15(5), 972–983 (2007)

    Article  Google Scholar 

  27. Wu, Z., Shi, P., Su, H., Lu, R.: Dissipativity-based sampled-data fuzzy control design and its application to truck-trailer system. IEEE Trans. Fuzzy Syst. 23(5), 1669–1679 (2015)

    Article  Google Scholar 

  28. Lam, H.K.: Stabilization of nonlinear systems using sampled-data output-feedback fuzzy controller based on polynomial-fuzzy-model-based control approach. IEEE Trans. Syst. Man Cybern. 42(1), 258–267 (2012)

    Article  Google Scholar 

  29. Sheng, L., Gao, M.: Stabilization for Markovian jump nonlinear systems with partly unknown transition probabilities via fuzzy control. Fuzzy Sets Syst. 161, 2780–2792 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, H., Wang, Z., Huang, X., Wang, J.: Fuzzy dissipative control for nonlinear Markovian jump ayatems via retarded feedback. J. Frankl. Inst. 351(7), 3797–3817 (2014)

    Article  MATH  Google Scholar 

  31. Li, F., Shi, P., Lim, C.C., Wu, L.: Fault detection filtering for nonhomogeneous Markovian jump systems via a fuzzy approach. IEEE Trans. Fuzzy Syst. 26(1), 131–141 (2018)

    Article  Google Scholar 

  32. Chen, G., Sun, J., Xia, J.: Robust sampled-data control for Itô stochastic Markovian jump systems with state delay. Int. J. Robust Nonlinear Control 28, 4345–4366 (2018)

    MATH  Google Scholar 

  33. Wu, Z., Shi, P., Su, H., Chu, J.: Local synchronization of chaotic neural networks with sampled-data and saturating actuators. IEEE Trans. Cybern. 44(12), 2635–2645 (2014)

    Article  Google Scholar 

  34. Fridman, E.: A refined input delay approach to sampled-data control. Automatica 46(2), 421–427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Seuret, A., Briat, C.: Stability analysis of uncertain sampled-data systems with incremental delay using looped-function. Automatica 55(37), 274–278 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zeng, H., Teo, K.L., He, Y.: A new looped-functional for stability analysis of sampled-data systems. Automatica 82, 328–331 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ma, W., Jia, X., Yang, F., Zhang, D.: An impulsive-switched-system approach to aperiodic sampled-data systems with time-delay control. Int. J. Robust Nonlinear Control (2018). https://doi.org/10.1002/rnc.4030

    MathSciNet  MATH  Google Scholar 

  38. Shen, H., Park, J.H., Zhang, L., Wu, Z.: Robust extended dissipative control for sampled-data Markov jump systems. Int. J. Control 87(8), 1549–1564 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chen, G., Sun, J., Chen, J.: Mean square exponential stabilization of sampled-data Markovian jump systems. Int. J. Robust Nonlinear Control 28, 5876–5894 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Cao, L., Zhou, Q., Dong, G., Li, H.: Observer-based adaptive event-triggered control for nonstrict-feedback nonlinear systems with output constraint and actuator failures. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2895858

    Google Scholar 

  41. Zhang, Z., Liang, H., Wu, C., Ahn, C.K.: Adaptive even-triggered output feedback fuzzy control for nonlinear networked systems with packet dropouts and random actuator failure. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2891236

    Google Scholar 

  42. Li, H., Zhang, Z., Yan, H., Xie, X.: Adaptive event-triggered fuzzy control for uncertain active suspension systems. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2864776

    Google Scholar 

  43. Li, H., Zhao, S., He, W., Lu, R.: Adaptive finite-time tracking control of full states constrained nonlinear systems with dead-zone. Automatica 100, 99–107 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Li, Y., Li, K., Tong, S.: Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO non-strict feedback systems. IEEE Trans. Fuzzy Syst. 27(1), 96–110 (2019)

    Article  MathSciNet  Google Scholar 

  45. Li, Y., Liu, L., Feng, G.: Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO non-strict feedback systems. Automatica 89, 325–332 (2018)

    Article  Google Scholar 

  46. Li, Y., Tong, S.: \(h_{\infty }\) Adaptive fuzzy control with prescribed performance for block-triangular-structured nonlinear systems. IEEE Trans. Fuzzy Syst. 26(3), 1153–1163 (2018)

    Article  Google Scholar 

  47. Li, Y., Tong, S.: \(h_{\infty }\) Adaptive neural networks prescribed performance control design for switched interconnected uncertain nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 29(7), 3059–3068 (2018)

    Article  MathSciNet  Google Scholar 

  48. Xia, J., Gao, H., Liu, M., Zhuang, G., Zhang, B.: Non-fragile finite-time extended dissipative control for a class of uncertain discrete time switched linear systems. J. Frankl. Inst. 355(6), 3031–3049 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yue, D., Lam, J.: Non-fragile guaranteed cost control for uncertain descriptor systems with time-varying state and input delays. Optim. Control Appl. Methods 26(2), 85105 (2005)

    Article  MathSciNet  Google Scholar 

  50. Wu, Y., Su, H., Lu, R., Wu, Z., Shu, Z.: Passivity-based non-fragile control for Markovian jump systems with aperiodic sampling. Syst. Control Lett. 84, 35–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Pan, Y., Yang, G.: Event-triggered fuzzy control for nonlinear networked control systems. Fuzzy Sets Syst. 329, 91–107 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Xu, S., Lam, J., Mao, X.: Delay-dependent \(H_{\infty }\) control and filtering for uncertain Markovian jump systems with time-varying delays. IEEE Trans. Circuits Syst. 54(9), 2070–2077 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zeng, H., Teo, K.L., He, Y., Xu, H., Wang, W.: Sampled-data synchronization control for chaotic neural networks subject to actuator saturation. Neurocomputing 260, 25–31 (2017)

    Article  Google Scholar 

  54. Xia, J., Park, J.H., Zeng, H., Shen, H.: Delay-difference-dependent robust exponential stability for uncertain stochastic neural networks with multiple delays. Neurocomputing 140, 210–218 (2014)

    Article  Google Scholar 

  55. Shen, H., Li, F., Yan, H., Karimi, H., Lam, H.: Finite-time event-triggered \({\cal{H}}_{\infty }\) control for T-S fuzzy Markov jump systems. IEEE Trans. Fuzzy Syst. 26(5), 3122–3135 (2018)

    Article  Google Scholar 

  56. Lin, C., Wang, G., Lee, T.H., He, Y.: LMI Approach to Analysis and Control of Takagi-Sugeno Fuzzy Systems with Time Delay. Springer, Berlin (2007)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and the reviewers for their comments and constructive suggestions, which helped to greatly improve the paper. This work was supported by the National Natural Science Foundation of China under Grants 61573177, 61773191, 61603170.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Xia, J., Chen, G. et al. Dissipativity-Based Non-fragile Sampled-Data Control for Fuzzy Markovian Jump Systems. Int. J. Fuzzy Syst. 21, 1709–1723 (2019). https://doi.org/10.1007/s40815-019-00691-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00691-1

Keywords

Navigation