Skip to main content
Log in

A K-means Interval Type-2 Fuzzy Neural Network for Medical Diagnosis

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper proposes a new medical diagnosis algorithm that uses a K-means interval type-2 fuzzy neural network (KIT2FNN). This KIT2FNN classifier uses a K-means clustering algorithm as the pre-classifier and an interval type-2 fuzzy neural network as the main classifier. Initially, the training data are classified into k groups using the K-means clustering algorithm and these data groups are then used sequentially to train the structure of the k classifiers for the interval type-2 fuzzy neural network (IT2FNN). The test data are also initially used to determine to which classifier they are best suited and then they are inputted into the corresponding main classifier for classification. The parameters for the proposed IT2FNN are updated using the steepest descent gradient approach. The Lyapunov theory is also used to verify the convergence and stability of the proposed method. The performance of the system is evaluated using several medical datasets from the University of California at Irvine (UCI). All of the experimental and comparison results are presented to demonstrate the effectiveness of the proposed medical diagnosis algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Steinhaus, H.: Sur la division des corp materiels en parties. Bull. Acad. Polonaise Sci. 1(804), 801 (1956)

    MathSciNet  MATH  Google Scholar 

  2. Xie, J., Jiang, S., Xie, W., Gao, X.: An efficient global K-means clustering algorithm. J. Comput. Phys. 6(2), 271–279 (2011)

    Google Scholar 

  3. Vora, P., Oza, B.: A survey on K-mean clustering and particle swarm optimization. Int. J. Sci. Mod. Eng. 1(3), 1–14 (2013)

    Google Scholar 

  4. Yunoh, M., Abdullah, S., Saad, M., Nopiah, Z., Nuawi, M.: K-means clustering analysis and artificial neural network classification of fatigue strain signals. J. Brazilian Soc. Mech. Sci. Eng. 39(3), 757–764 (2017)

    Article  Google Scholar 

  5. Singh, K., Malik, D., Sharma, N.: Evolving limitations in K-means algorithm in data mining and their removal. Int. J. Comput. Eng. Manag. 12, 105–109 (2011)

    Google Scholar 

  6. Jiang, P., Zhang, L., Li, W., Wang, X.: Pattern recognition for acoustic emission signals of offshore platform T-tube damage based on K-means clustering. Advances in Acoustic Emission Technology, pp. 53–61. Springer, Berlin (2017)

    Chapter  Google Scholar 

  7. Tuncer, S.A., Alkan, A.: A decision support system for detection of the renal cell cancer in the kidney. Measurement 123, 298–303 (2018)

    Article  Google Scholar 

  8. Gan, G., Ng, M.K.-P.: K-means clustering with outlier removal. Pattern Recogn. Lett. 90, 8–14 (2017)

    Article  Google Scholar 

  9. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  10. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)

    Article  Google Scholar 

  12. Eyoh, I., John, R., De Maere, G.: Interval type-2 intuitionistic fuzzy logic for regression problems. IEEE Trans. Fuzzy Syst. 26(4), 2396–2408 (2017)

    Article  Google Scholar 

  13. Zirkohi, M.M., Lin, T.-C.: Interval type-2 fuzzy-neural network indirect adaptive sliding mode control for an active suspension system. Nonlinear Dyn. 79(1), 513–526 (2015)

    Article  Google Scholar 

  14. Lin, C.-M., Le, T.-L., Huynh, T.-T.: Self-evolving function-link interval type-2 fuzzy neural network for nonlinear system identification and control. Neurocomputing 275, 2239–2250 (2018)

    Article  Google Scholar 

  15. Lin, C.-M., Le, T.-L.: PSO-self-organizing interval type-2 fuzzy neural network for antilock braking systems. Int. J. Fuzzy Syst. 19(5), 1362–1374 (2017)

    Article  MathSciNet  Google Scholar 

  16. Li, H., Wang, J., Wu, L., Lam, H.-K., Gao, Y.: Optimal guaranteed cost sliding-mode control of interval type-2 fuzzy time-delay systems. IEEE Trans. Fuzzy Syst. 26(1), 246–257 (2018)

    Article  Google Scholar 

  17. Guan, J.-S., Lin, L.-Y., Ji, G.L., Lin, C.-M., Le, T.-L., Rudas, I.J.: Breast tumor computer-aided diagnosis using self-validating cerebellar model neural networks. Acta Polytech. Hung. 13(4), 39–52 (2016)

    Google Scholar 

  18. Zhou, Q., Chao, F., Lin, C.-M.: A functional-link-based fuzzy brain emotional learning network for breast tumor classification and chaotic system synchronization. Int. J. Fuzzy Syst. 20(2), 349–365 (2018)

    Article  MathSciNet  Google Scholar 

  19. Dwivedi, A.K.: Performance evaluation of different machine learning techniques for prediction of heart disease. Neural Comput. Appl. 29(10), 1–9 (2016)

    Google Scholar 

  20. Liu, X., Wang, X., Su, Q., Zhang, M., Zhu, Y., Wang, Q., Wang, Q.: A hybrid classification system for heart disease diagnosis based on the RFRS method. Comput. Math. Methods Med. 2017, 1–11 (2017)

    MathSciNet  Google Scholar 

  21. Yılmaz, E.: Fetal state assessment from cardiotocogram data using artificial neural networks. J. Med. Biol. Eng. 36(6), 820–832 (2016)

    Article  Google Scholar 

  22. Mandal, I.: Machine learning algorithms for the creation of clinical healthcare enterprise systems. Enterp. Inf. Syst. 11(9), 1374–1400 (2017)

    Google Scholar 

  23. Aličković, E., Subasi, A.: Breast cancer diagnosis using GA feature selection and rotation forest. Neural Comput. Appl. 28(4), 753–763 (2017)

    Article  Google Scholar 

  24. Mendel, J.M.: Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice Hall PTR, Upper Saddle River (2001)

    MATH  Google Scholar 

  25. Stoean, R., Stoean, C.: Modeling medical decision making by support vector machines, explaining by rules of evolutionary algorithms with feature selection. Expert Syst. Appl. 40(7), 2677–2686 (2013)

    Article  MathSciNet  Google Scholar 

  26. Zheng, B., Yoon, S.W., Lam, S.S.: Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Syst. Appl. 41(4), 1476–1482 (2014)

    Article  Google Scholar 

  27. Lim, C.K., Chan, C.S.: A weighted inference engine based on interval-valued fuzzy relational theory. Expert Syst. Appl. 42(7), 3410–3419 (2015)

    Article  Google Scholar 

  28. Khan, R.A., Suleman, T., Farooq, M.S., Rafiq, M.H., Tariq, M.A.: Data mining algorithms for classification of diagnostic cancer using genetic optimization algorithms. IJCSNS 17(12), 207 (2017)

    Google Scholar 

  29. Buscema, M., Breda, M., Lodwick, W.: Training with Input selection and testing (TWIST) algorithm: a significant advance in pattern recognition performance of machine learning. J. Intell. Learn. Syst. Appl. 5(1), 29 (2013)

    Google Scholar 

  30. Tomar, D., Agarwal, S.: Feature selection based least square twin support vector machine for diagnosis of heart disease. Int. J. Bio-Sci. Bio-Technol. 6(2), 69–82 (2014)

    Article  Google Scholar 

  31. Lee, S.-H.: Feature selection based on the center of gravity of BSWFMs using NEWFM. Eng. Appl. Artif. Intell. 45, 482–487 (2015)

    Article  Google Scholar 

  32. Yılmaz, E., Kılıkçıer, Ç.: Determination of fetal state from cardiotocogram using LS-SVM with particle swarm optimization and binary decision tree. Comput. Math. Methods Med. 2013, 1–8 (2013)

    MATH  Google Scholar 

  33. Karabulut, E.M., Ibrikci, T.: Analysis of cardiotocogram data for fetal distress determination by decision tree based adaptive boosting approach. J. Comput. Commun. 2(09), 32–37 (2014)

    Article  Google Scholar 

  34. Ravindran, S., Jambek, A.B., Muthusamy, H., Neoh, S.-C.: A novel clinical decision support system using improved adaptive genetic algorithm for the assessment of fetal well-being. Comput. Math. Methods Med. 2015, 1–11 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support in part from the Ministry of Science and Technology of Republic of China under Grant MOST 106-2221-E-155-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Min Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, TL., Huynh, TT., Lin, LY. et al. A K-means Interval Type-2 Fuzzy Neural Network for Medical Diagnosis. Int. J. Fuzzy Syst. 21, 2258–2269 (2019). https://doi.org/10.1007/s40815-019-00730-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00730-x

Keywords

Navigation