Skip to main content

Advertisement

Log in

A Novel Fuzzy Inference Approach: Neuro-fuzzy Cognitive Map

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this study, a new approach based on fuzzy cognitive map (FCM) and neuro-fuzzy inference system (NFIS), called the neuro-fuzzy cognitive map (NFCM), is proposed. Here, the NFCM is used for diagnosis of autoimmune hepatitis (AIH). AIH is a chronic inflammatory liver disease. AIH primarily affects women and typically responds to immunosuppressive therapy with clinical, biochemical, and histological remission. An untreated AIH can lead to scarring of the liver and ultimately to liver failure. If rapidly diagnosed, AIH can often be controlled by medication. NFCM is a new extension of FCM, which employs a NFIS to determine the causal relationships between concepts. In the proposed approach, weights are calculated using the knowledge and experience of experts as well as the advantages of NFIS. This makes the presented model more accurate. Having a high convergence speed, the proposed NFCM model performs well by achieving an AIH diagnosis accuracy of 89.81%. The superiority of the proposed NFCM model over the conventional FCM is that, it uses the NFIS to determine the link weights which train system parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kazak, J., van Hoof, J., Szewranski, S.: Challenges in the wind turbines location process in Central Europe—the use of spatial decision support systems. Renew. Sustain. Energy Rev. 76, 425–433 (2017)

    Article  Google Scholar 

  2. Wu, P., Zhou, L., Chen, H., Tao, Z.: Additive consistency of hesitant fuzzy linguistic preference relation with a new expansion principle for hesitant fuzzy linguistic term sets. IEEE Trans. Fuzzy Syst. 27, 716–730 (2019)

    Article  Google Scholar 

  3. Lin, J.-H., Haug, P.J.: Exploiting missing clinical data in Bayesian network modeling for predicting medical problems. J. Biomed. Inform. 41, 1–14 (2008)

    Article  Google Scholar 

  4. Najafi, A., Amirkhani, A., Papageorgiou, E.I., Mosavi, M.R. Medical decision making based on fuzzy cognitive map and a generalization linguistic weighted power mean for computing with words. In: International conference on fuzzy systems (FUZZ-IEEE), IEEE (2017)

  5. Deng, C., Yang, G.H.: Distributed adaptive fuzzy control for nonlinear multiagent systems under directed graphs. IEEE Trans. Fuzzy Syst. 26, 1356–1366 (2018)

    Google Scholar 

  6. Wu, K., Liu, J.: Robust learning of large-scale fuzzy cognitive maps via the lasso from noisy time series. Knowl. Based Syst. 113, 23–38 (2016)

    Article  Google Scholar 

  7. Amirkhani, A., Papageorgiou, E.I., Mohseni, A., Mosavi, M.R.: A review of fuzzy cognitive maps in medicine: taxonomy, methods, and applications. Comput. Methods Prog. Biomed. 142, 129–145 (2017)

    Article  Google Scholar 

  8. Amirkhani, A., Kolahdoozi, M., Wang, C., Kurgan, L.: Prediction of DNA-binding residues in local segments of protein sequences with Fuzzy Cognitive Maps. IEEE/ACM Trans. Comput. Biol. Bioinform. (2018). https://doi.org/10.1109/TCBB.2018.2890261

    Article  Google Scholar 

  9. Papakostas, G.A., Boutalis, Y.S., Koulouriotis, D.E., Mertzios, B.G.: Fuzzy cognitive maps for pattern recognition applications. Int. J. Pattern Recognit. Artif. Intell. 22, 1461–1486 (2008)

    Article  Google Scholar 

  10. Amirkhani, A., Kolahdoozi, M., Papageorgiou, E.I., Mosavi, M.R.: Classifying mammography images by using fuzzy cognitive maps and a new segmentation algorithm. Advanced data analytics in health, pp. 99–116. Springer, Berlin (2018)

    Chapter  Google Scholar 

  11. Amirkhani, A., Shirzadeh, M., Papageorgiou, E.I., Mosavi, M.R.: Visual-based quadrotor control by means of fuzzy cognitive maps. ISA Trans. 60, 128–142 (2016)

    Article  Google Scholar 

  12. Amirkhani, A., Shirzadeh, M., Papageorgiou, E.I., Mosavi, M.R. Fuzzy cognitive map for visual servoing of flying robot. In: International conference on fuzzy systems (FUZZ-IEEE), IEEE, pp. 1371–1376 (2016)

  13. Subramanian, K., Suresh, S., Sundararajan, N.: A metacognitive neuro-fuzzy inference system (McFIS) for sequential classification problems. IEEE Trans. Fuzzy Syst. 21, 1080–1095 (2013)

    Article  Google Scholar 

  14. Mitra, S., Hayashi, Y.: Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Trans. Neural Netw. 11, 748–768 (2000)

    Article  Google Scholar 

  15. Subramanian, K., Savitha, R., Suresh, S.: A complex-valued neuro-fuzzy inference system and its learning mechanism. Neurocomputing. 123, 110–120 (2014)

    Article  Google Scholar 

  16. Gil, M., Gil, P.: Fuzziness in the experimental outcomes: comparing experiments and removing the loss of information. J. Statist. Plann. Inference 31, 93 (1992)

    Article  MathSciNet  Google Scholar 

  17. Gil, M.: Fuzziness and loss of information in statistical problems. IEEE Trans. Syst. Man Cybern. 17, 1016–1025 (1987)

    Article  Google Scholar 

  18. Mitra, S., Pal, S.K.: Neuro-fuzzy expert systems: relevance, features and methodologies. J. IETE. 42, 335–347 (1996)

    Article  Google Scholar 

  19. Das, A.K., Pratihar, D.K.: A novel approach for neuro-fuzzy system-based multi-objective optimization to capture inherent fuzziness in engineering processes. Knowl. Based Syst. (2019). https://doi.org/10.1016/j.knosys.2019.03.017

    Article  Google Scholar 

  20. Škrjanc, I., Iglesias, J., Sanchis, A., Leite, D., Lughofer, E., Gomide, F.: Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: a survey. Inform. Sci. 53, 9–18 (2019)

    Google Scholar 

  21. Makol, A., Watt, K.D., Chowdhary, V.R.: Autoimmune hepatitis: a review of current diagnosis and treatment. Hepat. Res. Treat. 2011, 390916 (2011)

    Google Scholar 

  22. Balal, E., Cheu, R.L. Modeling of lane changing decisions: comparative evaluation of fuzzy inference system, support vector machine and multilayer feed-forward neural network (2017)

  23. Rong, H.-J., Sundararajan, N., Huang, G.-B., Saratchandran, P.: Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets Syst. 157, 1260–1275 (2006)

    Article  MathSciNet  Google Scholar 

  24. Huang, G.-B., Siew, C.-K. Extreme learning machine: RBF network case, In: Control. Autom. Robot. Vis. Conf. 2004. ICARCV 2004 8th, IEEE, pp. 1029–1036 (2004)

  25. Cho, K.B., Wang, B.H.: Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction. Fuzzy Sets Syst. 83, 325–339 (1996)

    Article  MathSciNet  Google Scholar 

  26. Velasquez, J.D.: Adaptive multidimensional neuro-fuzzy inference system for time series prediction. IEEE Lat. Am. Trans. 13, 2694–2699 (2015)

    Article  Google Scholar 

  27. Soualhi, A., Razik, H., Clerc, G., Doan, D.D.: Prognosis of bearing failures using hidden Markov models and the adaptive neuro-fuzzy inference system. IEEE Trans. Ind. Electron. 61, 2864–2874 (2014)

    Article  Google Scholar 

  28. Bartoletti, N., Casagli, F., Marsili-Libelli, S., Nardi, A., Palandri, L.: Data-driven rainfall/runoff modelling based on a neuro-fuzzy inference system. Environ. Model. Softw. 106, 35–47 (2017)

    Article  Google Scholar 

  29. Übeyli, E.D.: Adaptive neuro-fuzzy inference system for classification of ECG signals using Lyapunov exponents. Comput. Methods Progr. Biomed. 93, 313–321 (2009)

    Article  Google Scholar 

  30. Shihabudheen, K.V., Pillai, G.N.: Regularized extreme learning adaptive neuro-fuzzy algorithm for regression and classification. Knowl. Based Syst. 127, 100–113 (2017)

    Article  Google Scholar 

  31. Mousavi-Avval, S.H., Rafiee, S., Sharifi, M., Hosseinpour, S., Shah, A.: Combined application of Life Cycle Assessment and Adaptive Neuro-Fuzzy Inference System for modeling energy and environmental emissions of oilseed production. Renew. Sustain. Energy Rev. 78, 807–820 (2017)

    Article  Google Scholar 

  32. Axelrod, R. The cognitive mapping approach to decision making. In: Structure of decision, pp. 221–250 (1976)

  33. Kosko, B.: Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24, 65–75 (1986)

    Article  Google Scholar 

  34. Amirkhani, A., Mosavi, M.R., Papageorgiou, E.I., Mohammadi, K.: A novel hybrid method based on fuzzy cognitive maps and fuzzy clustering algorithms for grading celiac disease. Neural Comput. Appl. 30, 1573–1588 (2016)

    Article  Google Scholar 

  35. Kolahdoozi, M., Amirkhani, A., Shojaeefard, M.H., Abraham, A.: A novel quantum inspired algorithm for sparse fuzzy cognitive maps learning. Appl. Intell. 49, 3652–3667 (2019)

    Article  Google Scholar 

  36. Manns, M.P., Czaja, A.J., Gorham, J.D., Krawitt, E.L., Mieli-Vergani, G., Vergani, D., Vierling, J.M.: Diagnosis and management of autoimmune hepatitis. Hepatology 51, 2193–2213 (2010)

    Article  Google Scholar 

  37. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1993)

    Article  Google Scholar 

  38. Kasabov, N.K., Song, Q.: DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. Fuzzy Syst. 10, 144–154 (2002)

    Article  Google Scholar 

  39. Kim, J., Kasabov, N.: HyFIS: adaptive neuro-fuzzy inference system and their application to nonlinear dynamic systems. Neural Netw. 12, 1301–1319 (1999)

    Article  Google Scholar 

  40. Zhang, J., Chung, H.S.H., Lo, W.L.: Chaotic time series prediction using a neuro-fuzzy system with time-delay coordinates. IEEE Trans. Knowl. Data Eng. 20, 956–964 (2008)

    Article  Google Scholar 

  41. Carvalho, J.P., Tomé, J.A.B.: Qualitative modelling of an economic system using rule-based fuzzy cognitive maps. Fuzzy Syst. 2, 659–664 (2004)

    Google Scholar 

  42. Salmeron, J.L.: Modelling grey uncertainty with fuzzy grey cognitive maps. Expert Syst. Appl. 37, 7581–7588 (2010)

    Article  Google Scholar 

  43. Amirkhani, A., Papageorgiou, E.I., Mosavi, M.R., Mohammadi, K.: A novel medical decision support system based on fuzzy cognitive maps enhanced by intuitive and learning capabilities for modeling uncertainty. Appl. Math. Comput. 337, 562–582 (2018)

    Google Scholar 

  44. Hajek, P., Froelich, W.: Integrating TOPSIS with interval-valued intuitionistic fuzzy cognitive maps for effective group decision making. Inf. Sci. 485, 394–412 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Amirkhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirkhani, A., Nasiriyan-Rad, H. & Papageorgiou, E.I. A Novel Fuzzy Inference Approach: Neuro-fuzzy Cognitive Map. Int. J. Fuzzy Syst. 22, 859–872 (2020). https://doi.org/10.1007/s40815-019-00762-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00762-3

Keywords

Navigation