Skip to main content

Advertisement

Log in

Improved Delay-Range-Dependent Stability Condition for T–S Fuzzy Systems with Variable Delays Using New Extended Affine Wirtinger Inequality

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, a new integral inequality lemma along with an appropriate Lyapunov–Krasovskii functional (LKF) is proposed for fuzzy time-delay system to enhance the delay upper bound estimate. The proposed lemma is referred to hereafter as Extended Affine Wirtinger inequality. The novelty of the lemma is twofold, it has the ability to integrate uncertain delay information utilizing the convex combination of certain and uncertain delay intervals involved in the proposed LKF, and it is compatible to derive delay-range-dependent (DRD) stability conditions for continuous time Takagi–Sugeno (T–S) fuzzy time-delay system. One noteworthy advantage of the proposed stability condition in a linear matrix inequality (LMI) framework is that it requires less number of matrix variables compared to the existing integral inequalities of the similar type, thus reducing the computational burden too. The efficacy of the proposed DRD stability condition over existing conditions is validated numerically by solving three examples related to fuzzy time-delay system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khalil, H.K., Grizzle, J.W.: Nonlinear Systems. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  2. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, Hoboken (2004)

    Google Scholar 

  3. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  4. Boyd, S.P., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  5. Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI Control Toolbox-for Use with Matlab, Natick. The MATH Works, Inc, MA (1995)

    Google Scholar 

  6. Gu, K., Chen, J., Kharitonov, V.L.: Stability of Time-Delay Systems. Birkhauser, Boston (2003)

    Book  MATH  Google Scholar 

  7. Parlakçı, M.N.A.: Improved robust stability criteria and design of robust stabilizing controller for uncertain linear time-delay systems. Int. J. Robust Nonlinear Control IFAC-Affil. J. 16(13), 599–636 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, J., Xu, D., Shafai, B.: On sufficient conditions for stability independent of delay. IEEE Trans. Autom. Control 40(9), 1675–1680 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. He, Y., Wang, Q.G., Xie, L., Lin, C.: Further improvement of free-weighting matrices technique for systems with time-varying delay. IEEE Trans. Autom. Control 52(2), 293–299 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dey, R., Martinez Garcia, J.C.: Improved delay-range-dependent stability analysis for uncertain retarded systems based on affine Wirtinger-inequality. Int. J. Robust Nonlinear Control 27(16), 3028–3042 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zeng, H.B., He, Y., Wu, M., She, J.: Free-matrix-based integral inequality for stability analysis of systems with time-varying delay. IEEE Trans. Autom. Control 60(10), 2768–2772 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Seuret, A., Gouaisbaut, F.: Wirtinger-based integral inequality: application to time-delay systems. Automatica 49(9), 2860–2866 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gyurkovics, É.: A note on Wirtinger-type integral inequalities for time-delay systems. Automatica 61, 44–46 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ji, X., Su, H.: A note on equivalence between two integral inequalities for time-delay systems. Automatica 53, 244–246 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Park, P., Ko, J.W., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1), 235–238 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dey, R., Ghosh, S., Ray, G., Rakshit, A., Balas, V.E.: Improved delay-range-dependent stability analysis of a time-delay system with norm bounded uncertainty. ISA Trans. 58, 50–57 (2015)

    Article  Google Scholar 

  17. Sun, J., Liu, G., Chen, J., Rees, D.: Improved delay-range-dependent stability criteria for linear systems with time-varying delays. Automatica 46(2), 466–470 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dey, R., Ghosh, S., Ray, G., Rakshit, A.: State feedback stabilization of uncertain linear time-delay systems: a nonlinear matrix inequality approach. Numer. Linear Algebra Appl. 18(3), 351–361 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dey, R., Ghosh, S., Ray, G., Rakshit, A.: Improved delay-dependent stabilization of time-delay systems with actuator saturation. Int. J. Robust Nonlinear Control 24(5), 902–917 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Datta, R., Bhattacharya, B., Chakrabarti, A.: On improved delay-range-dependent stability condition for linear systems with time-varying delay via Wirtinger inequality. Int. J. Dyn. Control 6(4), 1745–1754 (2018)

    Article  MathSciNet  Google Scholar 

  21. Dey, R., Ghosh, S., Gyurkovics, E., Ray, G.: Delay-interval-dependent stability criterion for linear systems with time-varying state delay. IFAC-PapersOnLine 48(14), 120–125 (2015)

    Article  Google Scholar 

  22. Wu, H.N., Li, H.X.: New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy systems with time-varying delay. IEEE Trans. Fuzzy Syst. 15(3), 482–493 (2007)

    Article  Google Scholar 

  23. Liu, F., Wu, M., He, Y., Yokoyama, R.: New delay-dependent stability criteria for T–S fuzzy systems with time-varying delay. Fuzzy Sets Syst. 161(15), 2033–2042 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. An, J., Li, T., Wen, G., Li, R.: New stability conditions for uncertain T–S fuzzy systems with interval time-varying delay. Int. J. Control Autom. Syst. 10(3), 490–497 (2012)

    Article  Google Scholar 

  25. An, J., Wen, G.: Improved stability criteria for time-varying delayed T–S fuzzy systems via delay partitioning approach. Fuzzy Sets Syst. 185(1), 83–94 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, B., Liu, X., Tong, S.: New delay-dependent stabilization conditions of T–S fuzzy systems with constant delay. Fuzzy sets Syst. 158(20), 2209–2224 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Souza, F.O., Campos, V., Palhares, R.M.: On delay-dependent stability conditions for Takagi–Sugeno fuzzy systems. J. Franklin Inst. 351(7), 3707–3718 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Datta, R., Dey, R., Bhattacharya, B., Chakrabarti, A.: Improved stability condition for fuzzy systems with interval time-varying delay. In IEEE Joint 17th World Congress of IFSA and 9th International Conference on SCIS, Japan, pp. 1–6 (2017)

  29. Zhang, Z., Lin, C., Chen, B.: New stability and stabilization conditions for T–S fuzzy systems with time delay. Fuzzy Sets Syst. 263, 82–91 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Feng, Z., Zheng, W.X.: Improved stability condition for Takagi–Sugeno fuzzy systems with time-varying delay. IEEE Trans. Cybern. 47(3), 661–670 (2017)

    Article  Google Scholar 

  31. Kwon, O.M., Park, M.J., Lee, S.M., Park, J.H.: Augmented Lyapunov–Krasovskii functional approaches to robust stability criteria for uncertain Takagi–Sugeno fuzzy systems with time-varying delays. Fuzzy Sets Syst. 201, 1–19 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lian, Z., He, Y., Zhang, C.K., Wu, M.: Stability analysis for T–S fuzzy systems with time-varying delay via free-matrix-based integral inequality. Int. J. Control Autom. Syst. 14(1), 21–28 (2016)

    Article  Google Scholar 

  33. Ma, Y., Chen, M.: Delay-dependent robust dissipative filter for T–S fuzzy descriptor time-varying delay systems. J. Control Autom. Electr. Syst. 26(5), 476–483 (2015)

    Article  Google Scholar 

  34. Peng, C., Han, Q.L.: Delay-range-dependent robust stabilization for uncertain T–S fuzzy control systems with interval time-varying delays. Inf. Sci. 181(19), 4287–4299 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Peng, C., Wen, L.Y., Yang, J.Q.: On Delay-dependent robust stability criteria for uncertain T–S fuzzy systems with interval time-varying delay. Int. J. Fuzzy Syst. 13(1), 35–44 (2011)

    MathSciNet  Google Scholar 

  36. Bourahala, F., Guelton, K., Manamanni, N., Khaber, F.: Relaxed controller design conditions for Takagi–Sugeno systems with state time-varying delays. Int. J. Fuzzy Syst. 19(5), 1406–1416 (2017)

    Article  MathSciNet  Google Scholar 

  37. Che, C., Peng, J., Xiao, J., Zhao, T., Zhou, J.: Membership-function-dependent stabilization conditions for interval type-2 fuzzy time-delay systems via static output feedback scheme. Int. J. Fuzzy Syst. 20(5), 1439–1450 (2018)

    Article  MathSciNet  Google Scholar 

  38. Ammar, I.I., Gassara, H., El Hajjaji, A., Chaabane, M.: New polynomial Lyapunov functional approach to observer-based control for polynomial fuzzy systems with time delay. Int. J. Fuzzy Syst. 20(4), 1057–1068 (2018)

    Article  MathSciNet  Google Scholar 

  39. Zeng, H.B., Park, J.H., Xia, J.W., Xiao, S.P.: Improved delay-dependent stability criteria for T–S fuzzy systems with time-varying delay. Appl. Math. Comput. 235, 492–501 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Gassara, H., El Hajjaji, A., Krid, M., Chaabane, M.: Stability analysis and memory control design of polynomial fuzzy systems with time delay via polynomial Lyapunov–Krasovskii functional. Int. J. Control Automat. Syst. 16(4), 2011–2020 (2018)

    Article  Google Scholar 

  41. Rong, N., Wang, Z., Ding, S., Zhang, H.: Interval type-2 regional switching T–S fuzzy control for time-delay systems via membership function dependent approach. Fuzzy Sets Syst. (2018). https://doi.org/10.1016/j.fss.2018.10.014

    Article  MATH  Google Scholar 

  42. Wang, Y., Xia, Y., Zhou, P.: Fuzzy-model-based sampled-data control of chaotic systems: a fuzzy time-dependent Lyapunov–Krasovskii functional approach. IEEE Trans. Fuzzy Syst. 25(6), 1672–1684 (2017)

    Article  Google Scholar 

  43. Tan, J., Dian, S., Zhao, T., Chen, L.: Stability and stabilization of T–S fuzzy systems with time delay via Wirtinger-based double integral inequality. Neurocomputing 275, 1063–1071 (2018)

    Article  Google Scholar 

  44. Zhao, L., Gao, H., Karimi, H.R.: Robust stability and stabilization of uncertain T–S fuzzy systems with time-varying delay: an input-output approach. IEEE Trans. Fuzzy Syst. 21(5), 883–897 (2013)

    Article  Google Scholar 

  45. Benzaouia, A., El Hajjaji, A.: Conditions of stabilization of positive continuous Takagi–Sugeno fuzzy systems with delay. Int. J. Fuzzy Syst. 20(3), 750–758 (2018)

    Article  MathSciNet  Google Scholar 

  46. Yang, Z., Zhang, H.: Stability and \(L_1\)-gain analysis for switched positive T–S fuzzy systems with time-varying delay. Int. J. Fuzzy Syst. 20(2), 380–389 (2018)

    Article  MathSciNet  Google Scholar 

  47. Liu, J.C.: A generalized probability-interval-decomposition approach for stability analysis of T–S fuzzy systems with stochastic delays. J. Franklin Inst. 355(3), 1373–1393 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wang, B., Cheng, J., Al-Barakati, A., Fardoun, H.M.: A mismatched membership function approach to sampled-data stabilization for T–S fuzzy systems with time-varying delayed signals. Signal Process. 140, 161–170 (2017)

    Article  Google Scholar 

  49. Tan, J., Dian, S., Zhao, T.: Further studies on stability and stabilization of T–S fuzzy systems with time-varying delays via fuzzy Lyapunov–Krasovskii functional method. Asian J. Control 20(6), 2207–2222 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, L., Lam, H.K.: New stability criterion for continuous-time Takagi–Sugeno fuzzy systems with time-varying delay. IEEE Trans. Cybern. 99, 1–6 (2018)

    Article  Google Scholar 

  51. Peng, C., Fei, M.R.: An improved result on the stability of uncertain T–S fuzzy systems with interval time-varying delay. Fuzzy Sets Syst. 212, 97–109 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang, L., Lam, H.K.: A new approach to stability and stabilization analysis for continuous-time Takagi–Sugeno fuzzy systems with time delay. IEEE Trans. Fuzzy Syst. 26(4), 2460–2465 (2018)

    Article  Google Scholar 

  53. Li, M., Shu, F., Liu, D., Zhong, S.: Robust \(\text{ H }_{\infty }\) control of T–S fuzzy systems with input time-varying delays: a delay partitioning method. Appl. Math. Comput. 321, 209–222 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Tian, E., Yue, D., Zhang, Y.: Delay-dependent robust \(\text{ H }_{\infty }\) control for T–S fuzzy system with interval time-varying delay. Fuzzy Sets Syst. 160(12), 1708–1719 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang, Z., Li, A., Yu, S.: Finite-time synchronization for delayed complex-valued neural networks via integrating inequality method. Neurocomputing 318, 248–260 (2018)

    Article  Google Scholar 

  56. Zhang, Z., Cao, J.: Novel finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method. IEEE Trans. Neural Netw. Learn. Syst. (2018). https://doi.org/10.1109/TNNLS.2018.2868800

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupak Datta.

Appendix 1

Appendix 1

Proof of Lemma 3:

Based on Schur’s complement, for positive definite symmetric matrix R and free matrices \(N_{1},\,N_{2},\,N_{3},\,N_{4}\) with appropriate dimension, the following inequality holds

$$\begin{aligned} \mho _{k}=\begin{bmatrix} \begin{bmatrix} N_{2k-1}\\N_{2k} \end{bmatrix}R^{-1}\begin{bmatrix} N_{2k-1}\\N_{2k} \end{bmatrix}^\mathrm{T}&\begin{bmatrix} N_{2k-1}\\N_{2k} \end{bmatrix}\\ {*}&R \end{bmatrix}\ge 0,\quad k=1,2 \end{aligned}$$

which implies that

$$\begin{aligned} \int _{a}^{c(t)}\vartheta _{1}^\mathrm{T}\mho _{1}\vartheta _{1} \,\mathrm{d}s+\int _{c(t)}^{b}\vartheta _{2}^\mathrm{T}\mho _{2}\vartheta _{2} \,\mathrm{d}s\ge 0,\quad a<c(t)<b, \end{aligned}$$
(48)

where \(\vartheta _{1},\,\vartheta _{2}\) are any vectors. Next, for the function \(\gamma (s,a,b)=\dfrac{2s-b-a}{b-a}\), the following integration is calculated as

$$\begin{aligned} \int _{a}^{b}\gamma (s,a,b)\,\mathrm{d}s&=0,\int _{a}^{b}\gamma ^{2}(s,a,b)\,\mathrm{d}s=\dfrac{b-a}{3}. \end{aligned}$$
(49)
$$\begin{aligned} \int _{a}^{b}\dot{x}(s)\,\mathrm{d}s&=\left[ x(b)-x(a) \right] .\end{aligned}$$
(50)
$$\begin{aligned} \int _{a}^{b}\gamma (s,a,b)\dot{x}(s)\,\mathrm{d}s&=\left[ x(b)+x(a)-\dfrac{2}{b-a}\int _{a}^{b}x(s)\,\mathrm{d}s \right] . \end{aligned}$$
(51)

Define the vectors \(\vartheta _{1}\) and \(\vartheta _{2}\) as follows

$$\begin{aligned} \vartheta _{1}&=\left[ -\zeta ^\mathrm{T}(t)\,\,-\gamma _{1}\zeta ^\mathrm{T}(t)\,\,\dot{x}^\mathrm{T}(s) \right] ^\mathrm{T},\,\gamma _{1}=\gamma (s,a,c(t)),\\ \vartheta _{2}&=\left[ -\zeta ^\mathrm{T}(t)\,\,-\gamma _{2}\zeta ^\mathrm{T}(t)\,\,\dot{x}^\mathrm{T}(s) \right] ^\mathrm{T},\,\gamma _{2}=\gamma (s,c(t),b). \end{aligned}$$

Thus, recalculating (48) based on the above definitions, yields

$$\begin{aligned}&\int _{a}^{c(t)}\vartheta _{1}^\mathrm{T}\mho _{1}\vartheta _{1} \,\mathrm{d}s+\int _{c(t)}^{b}\vartheta _{2}^\mathrm{T}\mho _{2}\vartheta _{2} \,\mathrm{d}s\nonumber \\&\quad =\int _{a}^{c(t)}\dot{x}^\mathrm{T}(s)R\dot{x}(s)\,\mathrm{d}s+\int _{c(t)}^{b}\dot{x}^\mathrm{T}(s)R\dot{x}(s)\,\mathrm{d}s\nonumber \\&\qquad +\,\zeta ^\mathrm{T}(t)(N_{1}R^{-1}N^\mathrm{T}_{1})\zeta (t)\int _{a}^{c(t)}\,\mathrm{d}s\nonumber \\&\qquad +\,\zeta ^\mathrm{T}(t)(N_{2}R^{-1}N^\mathrm{T}_{2})\zeta (t)\int _{a}^{c(t)}\gamma ^{2}(s,a,c(t))\,\mathrm{d}s\nonumber \\&\qquad +\,\zeta ^\mathrm{T}(t)(N_{3}R^{-1}N^\mathrm{T}_{3})\zeta (t)\int _{c(t)}^{b}\,\mathrm{d}s\nonumber \\&\qquad +\,\zeta ^\mathrm{T}(t)(N_{4}R^{-1}N^\mathrm{T}_{4})\zeta (t)\int _{c(t)}^{b}\gamma ^{2}(s,c(t),b)\,\mathrm{d}s\nonumber \\&\qquad -\,2\zeta ^\mathrm{T}(t)N_{1}\int _{a}^{c(t)}\dot{x}(s)\,\mathrm{d}s\nonumber \\&\qquad -\,2\zeta ^\mathrm{T}(t)N_{2}\int _{a}^{c(t)}\gamma (s,a,c(t))\dot{x}(s)\,\mathrm{d}s\nonumber \\&\qquad -\,2\zeta ^\mathrm{T}(t)N_{3}\int _{c(t)}^{b}\dot{x}(s)\,\mathrm{d}s\nonumber \\&\qquad -\,2\zeta ^\mathrm{T}(t)N_{4}\int _{c(t)}^{b}\gamma (s,c(t),b)\dot{x}(s)\,\mathrm{d}s\end{aligned}$$
(52)
$$\begin{aligned}&\quad =\int _{a}^{c(t)}\dot{x}^\mathrm{T}(s)R\dot{x}(s)\,\mathrm{d}s+\int _{c(t)}^{b}\dot{x}^\mathrm{T}(s)R\dot{x}(s)\,\mathrm{d}s\nonumber \\&\qquad +\,\zeta ^\mathrm{T}(t)\left[ \left( c(t)-a\right) \left( N_{1}R^{-1}N^\mathrm{T}_{1}+\dfrac{1}{3}N_{2}R^{-1}N^\mathrm{T}_{2} \right) \right. \nonumber \\&\qquad \left. +\,\left( b-c(t)\right) \left( N_{3}R^{-1}N^\mathrm{T}_{3}+\dfrac{1}{3}N_{4}R^{-1}N^\mathrm{T}_{4} \right) \right. \nonumber \\&\qquad \left. -\,2N_{1}\left( \overline{e}_{2}-\overline{e}_{3}\right) -2N_{2}\left( \overline{e}_{2}+\overline{e}_{3}-2\overline{e}_{4}\right) \right. \nonumber \\&\qquad \left. -\,2N_{3}\left( \overline{e}_{1}-\overline{e}_{2}\right) -2N_{4}\left( \overline{e}_{1}+\overline{e}_{2}-2\overline{e}_{5}\right) \right] \zeta (t)\nonumber \\&\quad =\int _{a}^{c(t)}\dot{x}^\mathrm{T}(s)R\dot{x}(s)\,\mathrm{d}s+\int _{c(t)}^{b}\dot{x}^\mathrm{T}(s)R\dot{x}(s)\,\mathrm{d}s\nonumber \\&\qquad +\,\zeta ^\mathrm{T}(t)\left[ \left( c(t)-a\right) \left( N_{1}R^{-1}N^\mathrm{T}_{1}+\dfrac{1}{3}N_{2}R^{-1}N^\mathrm{T}_{2} \right) \right. \nonumber \\&\qquad \left. +\,\left( b-c(t)\right) \left( N_{3}R^{-1}N^\mathrm{T}_{3}+\dfrac{1}{3}N_{4}R^{-1}N^\mathrm{T}_{4} \right) \right. \nonumber \\&\qquad \left. -\,\left( NL+L^\mathrm{T}N^\mathrm{T}\right) \right] \zeta (t)\ge 0. \end{aligned}$$
(53)

Using the concept of convex combination of LMIs in [21] and doing some algebraic manipulation, (53) can be written as

$$\begin{aligned}&\int _{a}^{c(t)}\dot{x}^\mathrm{T}(s)\textit{R}\dot{x}(s)\,\mathrm{d}s+\int _{c(t)}^{b}\dot{x}^\mathrm{T}(s)\textit{R}\dot{x}(s)\,\mathrm{d}s\nonumber \\&\quad \ge \zeta ^\mathrm{T}(t)\left[ NL+L^\mathrm{T}N^\mathrm{T}\right. \nonumber \\&\qquad \left. -\,h\alpha _{1}\left( N_{1}R^{-1}N^\mathrm{T}_{1}+\dfrac{1}{3}N_{2}R^{-1}N^\mathrm{T}_{2} \right) \right. \nonumber \\&\qquad \left. -\,h(1-\alpha _{1})\left( N_{3}R^{-1}N^\mathrm{T}_{3}+\dfrac{1}{3}N_{4}R^{-1}N^\mathrm{T}_{4} \right) \right] \zeta (t), \end{aligned}$$
(54)

where \(\alpha _{1}=\dfrac{c(t)-a}{h},\,h=(b-a)\). This complete the proof of Lemma 3. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, R., Dey, R. & Bhattacharya, B. Improved Delay-Range-Dependent Stability Condition for T–S Fuzzy Systems with Variable Delays Using New Extended Affine Wirtinger Inequality. Int. J. Fuzzy Syst. 22, 985–998 (2020). https://doi.org/10.1007/s40815-019-00795-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00795-8

Keywords

Navigation