Skip to main content
Log in

Grey Absolute Decision Analysis (GADA) Method for Multiple Criteria Group Decision-Making Under Uncertainty

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The study proposes a novel, convenient and dimensionless model of multi-criteria decision-making (MCDM), hereby referred to as Grey Absolute Decision Analysis (GADA) method. The foundation of the GADA method rests upon the Absolute Grey Relational Analysis (Absolute GRA) model and the system that the method follows to produce GADA Indexes and GADA Weights. The GADA Weights represent the relative weights of decision alternatives under given criteria. The method can handle both positive (“higher the better”) and negative (“lower the better”) criteria simultaneously in its algorithm. The method can deal with problems involving uncertainty and incomplete data. Two practical cases have been presented in the study to demonstrate the feasibility of the method. Furthermore, the GADA Weights obtained for the cases show that these values are comparable to the relative weights obtained through the traditional methods like AHP and SAW thus signifying the feasibility of the method. However, the conventional methods do not consider the mutual association between the judgments of the members of decision-making group (experts’ opinions), a weakness that the proposed method overwhelms. Therefore, the overall ranking obtained from the proposed method is acceptable, especially under the uncertain environment where the nature of mutual association between the judgments is not precise. The key benefit of the method lies in its adaptability to different scales of measurement. Also, it can provide relative weights and rankings of experts, criterion and alternatives. These benefits make the GADA method significant among the class of MCDM methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aczel, J., Saaty, T.L.: Procedures for synthesizing ratio judgements. J. Math. Psychol. 27, 93–102 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ananda, J., Herath, G.: A critical review of multi-criteria decision-making methods with special reference to forest management and planning. Ecol. Econ. 68, 2535–2548 (2009)

    Article  Google Scholar 

  3. Asadabadi, M.R., Chang, E., Saberi, M.: Are MCDM methods useful? A critical review of analytic hierarchy process (AHP) and analytic network process (ANP). Cogent Eng. 6, 1623153 (2019). https://doi.org/10.1080/23311916.2019.1623153

    Article  Google Scholar 

  4. Azadeh, A., Saberi, M., Atashbar, N. Z., Chang, E., Pazhoheshfar, P.: Z-AHP: a Z-number extension of fuzzy analytical hierarchy process. In: Proceedings of the 7th IEEE international conference on digital ecosystems and technologies (DEST). (2013). https://doi.org/10.1109/dest.2013.6611344

  5. Chi, P., Liu, P.: An extended TOPSIS method for the multiple attribute decision-making problems based on interval neutrosophic set. Neutrosophic Sets Syst. 1, 63–70 (2013)

    Google Scholar 

  6. Chithambaranathan, P., Subramanian, N., Gunasekaran, A., Palaniappan, P.L.K.: Service supply chain environmental performance evaluation using grey based hybrid MCDM approach. Int. J. Prod. Econ. 166, 163–176 (2015)

    Article  Google Scholar 

  7. Cheng, E.W.L., Li, H.: Analytic hierarchy process: an approach to determine measures for business performance. Meas. Bus. Excell. 5(3), 30–37 (2001)

    Article  Google Scholar 

  8. Condon, E., Golden, B., Wasil, E.: Visualizing group decisions in the analytic hierarchy process. Comput. Oper. Res. 30, 1435–1445 (2003)

    Article  MATH  Google Scholar 

  9. Deng, J.: Control problems of grey systems. Syst. Control Lett. 1(5), 288–294 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deng, Y., Chan, F.T.S., Wu, Y., Wang, D.: A new linguistic MCDM method based on multiple-criterion data fusion. Expert Syst. Appl. 38, 6985–6993 (2011)

    Article  Google Scholar 

  11. El-Santawy, M.F.: A VIKOR method for solving personnel training selection problem. Int. J. Comput. Sci. 1(2), 9–12 (2012)

    Google Scholar 

  12. Forman, E., Peniwati, K.: Aggregating individual judgments and priorities with the analytic hierarchy process. Eur. J. Oper. Res. 108, 165–169 (1998)

    Article  MATH  Google Scholar 

  13. González, N.Z., Moreno, J.O., Vega, Á.H. (eds.): Multi-Criteria Decision Analysis in Healthcare—Its Usefulness and Limitations for Decision-making. Fundación Weber, Madrid (2018). ISBN 978-84-947703-8-8

    Google Scholar 

  14. Haeri, S.A.S., Rezaei, J.: A grey-based green supplier selection model for uncertain environments. J. Clean. Prod. 221, 768–784 (2019)

    Article  Google Scholar 

  15. Hosseini-Nasab, H.: An application of fuzzy numbers in quantitative strategic planning method with MCDM. In: Proceedings of the 2012 international conference on industrial engineering and operations management Istanbul, Turkey, 3–6 July 2012

  16. Javed, S. A.: A novel research on grey incidence analysis models and its application in project management. Doctoral dissertation submitted to Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China (2019)

  17. Javed, S.A., Liu, S.F.: Predicting the research output/growth of selected countries: application of even GM (1,1) and NDGM models. Scientometrics 115(1), 395–413 (2018)

    Article  Google Scholar 

  18. Javed, S.A., Liu, S.F.: Bidirectional absolute GRA/GIA model for uncertain systems: application in project management. IEEE Access 7(1), 60885–60896 (2019)

    Article  Google Scholar 

  19. Javed, S.A., Syed, A.M., Javed, S.: Perceived organizational performance and trust in project manager and top management in project-based organizations: comparative analysis using statistical and grey systems methods. Grey Syst. Theory Appl. 8(3), 230–245 (2018)

    Article  Google Scholar 

  20. Kaliszewski, I., Podkopaev, D.: Simple additive weighting—a metamodel for multiple criteria decision analysis methods. Expert Syst. Appl. 54, 155–161 (2016)

    Article  Google Scholar 

  21. Kou, G., Lu, Y., Peng, Y., Shi, Y.: Evaluation of classification algorithms using MCDM and rank correlation. Int. J. Inf. Technol. Decis. Mak. 11(1), 197–225 (2012)

    Article  Google Scholar 

  22. Lee, P.T.W., Yang, Y.: Multi-Criteria Decision-making in Maritime Studies and Logistics: Applications and Cases. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-62338-2

    Book  Google Scholar 

  23. Levy, J.K., Taji, K.: Group decision support for hazards planning and emergency management: a group analytic network process (GANP) approach. Math. Comput. Model. 46, 906–917 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, B., He, C., Hu, L., Li, Y.: Dynamical analysis on influencing factors of grain production in Henan province based on grey systems theory. Grey Syst. Theory Appl. 2(1), 45–53 (2012)

    Article  Google Scholar 

  25. Liao, H., Wu, X.: DNMA: a double normalization-based multiple aggregation method for multi-expert multi-criteria decision-making. Omega (2019). https://doi.org/10.1016/j.omega.2019.04.001

    Article  Google Scholar 

  26. Liao, H., Xu, Z.: A VIKOR-based method for hesitant fuzzy multi-criteria decision-making. Fuzzy Optim. Decis. Mak. 12, 373–392 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liao, H., Xu, Z.: Consistency of the fused intuitionistic fuzzy preference relation ingroup intuitionistic fuzzy analytic hierarchy process. Appl. Soft Comput. 35, 812–826 (2015)

    Article  Google Scholar 

  28. Liu, J., Liu, X., Liu, Y., Liu, S.F.: A new decision process algorithm for MCDM problems with interval grey numbers via decision target adjustment. J. Grey Syst. 27(2), 104–120 (2015)

    Google Scholar 

  29. Liu, P., Hendiani, S., Bagherpour, M., Ghannadpour, S.F., Mahmoudi, A.: Utility-numbers theory. IEEE Access 7, 56994–57008 (2019)

    Article  Google Scholar 

  30. Liu, S.F., Yang, Y., Forrest, J.: Grey Data Analysis—Methods, Models and Applications. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-1841-1

    Book  MATH  Google Scholar 

  31. Liu, S.F., Xu, B., Forrest, J., Chen, Y., Yang, Y.: On uniform effect measure functions and a weighted multi-attribute grey target decision model. J. Grey Syst. 25(1), 1–11 (2013)

    Google Scholar 

  32. Mahmoudi, A., Feylizadeh, M.R., Darvishi, D., Liu, S.F.: Grey-fuzzy solution for multi-objective linear programming with interval coefficients. Grey Syst. Theory Appl. 8(3), 312–327 (2018)

    Article  Google Scholar 

  33. Mahmoudi, A., Bagherpour, M., Javed, S.A.: Grey earned value management: theory and applications. IEEE Trans. Eng. Manag. (2019). https://doi.org/10.1109/TEM.2019.292090

    Article  Google Scholar 

  34. Mahmoudi, A., Liu, S., Javed, S.A., Abbasi, M.: A novel method for solving linear programming with grey parameters. J. Intell. Fuzzy Syst. 36(1), 161–172 (2019)

    Article  Google Scholar 

  35. Mahmoudi, A., Javed, S. A., Liu, S., Deng, X.: Distinguishing coefficient driven sensitivity analysis of GRA model for intelligent decisions: application in project management. Technol. Econ. Dev. Econ. (2020). https://doi.org/10.3846/tede.2020.11890

    Article  Google Scholar 

  36. Palczewski, K., Sałabun, W.: Influence of various normalization methods in PROMETHEE II: an empirical study on the selection of the airport location. Procedia Comput Sci 159, 2051–2060 (2019)

    Article  Google Scholar 

  37. Pankratova, N., Nedashkovskaya, N.: Estimation of sensitivity of the DS/AHP method while solving foresight problems with incomplete data. Intell. Control Autom. 4, 80–86 (2013)

    Article  Google Scholar 

  38. Park, D., Kim, Y., Um, M.J., Choi, S.U.: Robust priority for strategic environmental assessment with incomplete information using multi-criteria decision-making analysis. Sustainability 7, 10233–10249 (2015)

    Article  Google Scholar 

  39. Roszkowska, E.: Multi-criteria decision-making models by applying the TOPSIS method to crisp and interval data. Multiple criteria decision-making/University of Economics in Katowice, vol. 6, pp. 200–300. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.ekon-element-000171231687 (2011)

  40. Saaty, T.L., Vargas, L.G.: Dispersion of group judgments. Math. Comput. Model. 46, 918–925 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Shuai, J., Wu, W.: Evaluating the influence of E-marketing on hotel performance by DEA and grey entropy. Expert Syst. Appl. 38, 8763–8769 (2011)

    Article  Google Scholar 

  42. Stanujkic, D., Zavadskas, E.K., Karabasevic, D., Smarandache, F., Turskis, Z.: The use of the pivot pairwise relative criteria importance assessment method for determining the weights of criteria. Rom. J. Econ. Forecast. 20(4), 116–133 (2017)

    Google Scholar 

  43. Tian, Z., Wang, J., Wang, J., Zhang, H.: An improved MULTIMOORA approach for multi-criteria decision-making based on interdependent inputs of simplified neutrosophic linguistic information. Neural Comput. Appl. 28(1), 585–597 (2016)

    Google Scholar 

  44. Triantaphyllou, E., Kovalerchuk, B., Mann Jr., L., Knapp, J.: Determining the most important criteria in maintenance decision-making. Qual. Maint. Eng. 3(1), 16–28 (1997)

    Article  Google Scholar 

  45. Truxillo, C.: Maximum likelihood parameter estimation with incomplete data. In: Proceedings of the thirtieth annual SAS (r) users group international conference, pp. 111–30. (2005)

  46. Turskis, Z., Zavadskas, E.K.: A novel method for multiple criteria analysis: grey additive ratio assessment (ARAS-G) method. Informatica 21(4), 597–610 (2010)

    Article  MathSciNet  Google Scholar 

  47. Tzeng, G.H., Huang, J.J.: Multiple Attribute Decision-making: Methods and Applications. CRC Press, Boca Raton (2011)

    Book  MATH  Google Scholar 

  48. Velasquez, M., Hester, P.T.: An analysis of multi-criteria decision-making methods. Int. J. Oper. Res. 10(2), 56–66 (2013)

    MathSciNet  Google Scholar 

  49. Wang, P., Zhu, Z., Wang, Y.: A novel hybrid MCDM model combining the SAW, TOPSIS and GRA methods based on experimental design. Inf. Sci. 345, 27–45 (2016)

    Article  Google Scholar 

  50. Wu, W.: Grey relational analysis method for group decision-making in credit risk analysis. EURASIA J. Math. Sci. Technol. Educ. 13(12), 7913–7920 (2017)

    Google Scholar 

  51. Wu, Y., Zhu, Q., Zhu, B.: Comparisons of decoupling trends of global economic growth and energy consumption between developed and developing countries. Energy Policy 116, 30–38 (2018)

    Article  Google Scholar 

  52. Zavadskas, E.K., Podvezko, V.: Integrated determination of objective criteria weights in MCDM. Int. J. Inf. Technol. Decis. Mak. 15(2), 267–283 (2016)

    Article  Google Scholar 

  53. Zhang, K., Ye, W., Zhao, L.: The absolute degree of grey incidence for grey sequence base on standard grey interval number operation. Kybernetes 41(7/8), 934–944 (2012)

    Article  MathSciNet  Google Scholar 

  54. Zhu, J., Hipel, K.W.: Multiple stages grey target decision-making method with incomplete weight based on multi-granularity linguistic label. Inf. Sci. 212, 15–32 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a project of the National Natural Science Foundation of China entitled “Research on network of reliability growth of complex equipment under the background of collaborative development” (No. 71671091). It is also supported by a joint project of both the NSFC and the Royal Society of the UK entitled “On grey dynamic scheduling model of complex product based on sensing information of internet of things” (No. 71811530338), a project of the Leverhulme Trust International Network entitled “Grey Systems and Its Applications” (No. IN-2014-020). At the same time, the authors would like to acknowledge the partial support of the Fundamental Research Funds for the Central Universities of China (No. NC2019003), and support of a project of Intelligence Introduction Base of the Ministry of Science and Technology (No. G20190010178). The codes related to GADA can be found at www.researchgate.net/project/Grey-Absolute-Decision-Analysis-GADA-MCDM-method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Ahmed Javed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javed, S.A., Mahmoudi, A. & Liu, S. Grey Absolute Decision Analysis (GADA) Method for Multiple Criteria Group Decision-Making Under Uncertainty. Int. J. Fuzzy Syst. 22, 1073–1090 (2020). https://doi.org/10.1007/s40815-020-00827-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00827-8

Keywords

Navigation