Skip to main content
Log in

Coronary Heart Disease Diagnosis Through Self-Organizing Map and Fuzzy Support Vector Machine with Incremental Updates

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The trade-off between computation time and predictive accuracy is important in the design and implementation of clinical decision support systems. Machine learning techniques with incremental updates have proven its usefulness in analyzing large collection of medical datasets for diseases diagnosis. This research aims to develop a predictive method for heart disease diagnosis using machine learning techniques. To this end, the proposed method is developed by unsupervised and supervised learning techniques. In particular, this research relies on Principal Component Analysis (PCA), Self-Organizing Map, Fuzzy Support Vector Machine (Fuzzy SVM), and two imputation techniques for missing value imputation. Furthermore, we apply the incremental PCA and FSVM for incremental learning of the data to reduce the computation time of disease prediction. Our data analysis on two real-world datasets, Cleveland and Statlog, showed that the use of incremental Fuzzy SVM can significantly improve the accuracy of heart disease classification. The experimental results further revealed that the method is effective in reducing the computation time of disease diagnosis in relation to the non-incremental learning technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mendis, S., et al.: Global atlas on cardiovascular disease prevention and control. World Health Organization, Geneva (2011)

    Google Scholar 

  2. Paul, A.K., et al.: Adaptive weighted fuzzy rule-based system for the risk level assessment of heart disease. Appl. Intell. 48(7), 1739–1756 (2018)

    Google Scholar 

  3. McAloon, C.J., et al.: The changing face of cardiovascular disease 2000–2012: an analysis of the world health organisation global health estimates data. Int. J. Cardiol. 224, 256–264 (2016)

    Google Scholar 

  4. Luengo-Fernandez, R., Leal, J., Gray, A.: UK research expenditure on dementia, heart disease, stroke and cancer: are levels of spending related to disease burden? Eur. J. Neurol. 19(1), 149–154 (2012)

    Google Scholar 

  5. El-Bialy, R., et al.: Feature analysis of coronary artery heart disease data sets. Procedia Comput. Sci. 65, 459–468 (2015)

    Google Scholar 

  6. Metwally, A.H., Elgamal, M.-A.F.: The relation between hepatitis C virus and coronary heart disease. Med. Hypotheses 82(4), 505 (2014)

    Google Scholar 

  7. Das, R., Turkoglu, I., Sengur, A.: Effective diagnosis of heart disease through neural networks ensembles. Expert Syst. Appl. 36(4), 7675–7680 (2009)

    Google Scholar 

  8. Gudadhe, M., Wankhade, K., Dongre, S.: Decision support system for heart disease based on support vector machine and artificial neural network. In: 2010 International Conference on Computer and Communication Technology (ICCCT), IEEE (2010)

  9. Berner, E.S.: Clinical decision support systems, vol. 233. Springer, Berlin (2007)

    Google Scholar 

  10. Johnston, M.E., et al.: Effects of computer-based clinical decision support systems on clinician performance and patient outcome: a critical appraisal of research. Ann. Intern. Med. 120(2), 135–142 (1994)

    Google Scholar 

  11. Bhatia, S., Prakash, P., Pillai, G.: SVM based decision support system for heart disease classification with integer-coded genetic algorithm to select critical features. In: Proceedings of the world congress on engineering and computer science (2008)

  12. Mantel, N.: The detection of disease clustering and a generalized regression approach. Cancer Res. 27(2), 209–220 (1967)

    Google Scholar 

  13. Nahato, K.B., Nehemiah, K.H., Kannan, A.: Hybrid approach using fuzzy sets and extreme learning machine for classifying clinical datasets. Inform. Med. Unlocked 2, 1–11 (2016)

    Google Scholar 

  14. Nilashi, M., et al.: A knowledge-based system for breast cancer classification using fuzzy logic method. Telematics Inform. 34(4), 133–144 (2017)

    Google Scholar 

  15. Fida, B., et al.: Heart disease classification ensemble optimization using genetic algorithm. In: 2011 IEEE 14th International Multitopic Conference, IEEE (2011)

  16. Kohonen, T.: Analysis of a simple self-organizing process. Biol. Cybern. 44(2), 135–140 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Maćkiewicz, A., Ratajczak, W.: Principal components analysis (PCA). Comput. Geosci. 19(3), 303–342 (1993)

    Google Scholar 

  19. Ju, Z., Cao, J.-Z., Gu, H.: Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou’s general PseAAC. J. Theor. Biol. 397, 145–150 (2016)

    Google Scholar 

  20. Nilashi, M., et al.: A hybrid intelligent system for the prediction of Parkinson’s Disease progression using machine learning techniques. Biocybern. Biomed. Eng. 38(1), 1–15 (2018)

    Google Scholar 

  21. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2(4), 433–459 (2010)

    Google Scholar 

  22. Ringnér, M.: What is principal component analysis? Nat. Biotechnol. 26(3), 303 (2008)

    Google Scholar 

  23. Ding, C., He X.: K-means clustering via principal component analysis. In: Proceedings of the twenty-first international conference on Machine learning, ACM (2004)

  24. Wall, M.E., Rechtsteiner, A., Rocha, L.M.: Singular value decomposition and principal component analysis. In: A practical approach to microarray data analysis. 2003, Springer. p. 91–109

  25. Wright, J., et al.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Advances in neural information processing systems (2009)

  26. Übeyli, E.D., Doğdu, E.: Automatic detection of erythemato-squamous diseases using k-means clustering. J. Med. Syst. 34(2), 179–184 (2010)

    Google Scholar 

  27. Adeli, A., Neshat, M.: A fuzzy expert system for heart disease diagnosis. In: Proceedings of International Multi Conference of Engineers and Computer Scientists, Hong Kong (2010)

  28. Nahar, J., et al.: Association rule mining to detect factors which contribute to heart disease in males and females. Expert Syst. Appl. 40(4), 1086–1093 (2013)

    Google Scholar 

  29. Kahramanli, H., Allahverdi, N.: Design of a hybrid system for the diabetes and heart diseases. Expert Syst. Appl. 35(1–2), 82–89 (2008)

    Google Scholar 

  30. Shao, Y.E., Hou, C.-D., Chiu, C.-C.: Hybrid intelligent modeling schemes for heart disease classification. Appl. Soft Comput. 14, 47–52 (2014)

    Google Scholar 

  31. Shilaskar, S., Ghatol, A.: Feature selection for medical diagnosis: evaluation for cardiovascular diseases. Expert Syst. Appl. 40(10), 4146–4153 (2013)

    Google Scholar 

  32. Anooj, P.: Clinical decision support system: risk level prediction of heart disease using weighted fuzzy rules. J. King Saud Univ. Comput. Inform. Sci. 24(1), 27–40 (2012)

    Google Scholar 

  33. Mangiameli, P., Chen, S.K., West, D.: A comparison of SOM neural network and hierarchical clustering methods. Eur. J. Oper. Res. 93(2), 402–417 (1996)

    MATH  Google Scholar 

  34. Nilashi, M., et al.: An analytical method for measuring the Parkinson’s disease progression: a case on a Parkinson’s telemonitoring dataset. Measurement 136, 545–557 (2019)

    Google Scholar 

  35. Ahani, A., et al.: Revealing customers’ satisfaction and preferences through online review analysis: the case of Canary Islands hotels. J. Retail. Consum. Serv. 51, 331–343 (2019)

    Google Scholar 

  36. Chen, D.-R., Chang, R.-F., Huang, Y.-L.: Breast cancer diagnosis using self-organizing map for sonography. Ultrasound Med. Biol. 26(3), 405–411 (2000)

    Google Scholar 

  37. Kiviluoto, K.: Predicting bankruptcies with the self-organizing map. Neurocomputing 21(1–3), 191–201 (1998)

    MATH  Google Scholar 

  38. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Trans. Neural Networks 11(3), 586–600 (2000)

    Google Scholar 

  39. Brown, M.P., et al.: Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. 97(1), 262–267 (2000)

    Google Scholar 

  40. Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: European conference on machine learning, Springer (1998)

  41. Joachims, T.: Learning to classify text using support vector machines, vol. 668. Springer, Berlin (2002)

    Google Scholar 

  42. Guyon, I., et al.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)

    MATH  Google Scholar 

  43. Orru, G., et al.: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 36(4), 1140–1152 (2012)

    Google Scholar 

  44. Samanta, B., Al-Balushi, K., Al-Araimi, S.: Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection. Eng. Appl. Artif. Intell. 16(7–8), 657–665 (2003)

    Google Scholar 

  45. Gunn, S.R.: Support vector machines for classification and regression. ISIS Tech. Rep. 14(1), 5–16 (1998)

    Google Scholar 

  46. Keerthi, S.S., Lin, C.-J.: Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput. 15(7), 1667–1689 (2003)

    MATH  Google Scholar 

  47. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, IEEE (2004)

  48. Mardani, A., et al.: Application of decision making and fuzzy sets theory to evaluate the healthcare and medical problems: a review of three decades of research with recent developments. Expert Syst. Appl. 137, 202–231 (2019)

    Google Scholar 

  49. Nilashi, M., et al.: Factors influencing medical tourism adoption in Malaysia: a DEMATEL-Fuzzy TOPSIS approach. Comput. Ind. Eng. 137, 106005 (2019)

    Google Scholar 

  50. Nilashi, M., et al.: Measuring sustainability through ecological sustainability and human sustainability: a machine learning approach. J. Clean. Prod. 240, 118162 (2019)

    Google Scholar 

  51. Yadegaridehkordi, E., et al.: The impact of big data on firm performance in hotel industry. Electron. Commer. Res. Appl. 40, 100921 (2019)

    Google Scholar 

  52. Lin, C.-F., Wang, S.-D.: Fuzzy support vector machines. IEEE Trans. Neural Netw. 13(2), 464–471 (2002)

    Google Scholar 

  53. Wang, W., Men, C., Lu, W.: Online prediction model based on support vector machine. Neurocomputing 71(4–6), 550–558 (2008)

    Google Scholar 

  54. Zhang, Z., Shen, H.: Application of online-training SVMs for real-time intrusion detection with different considerations. Comput. Commun. 28(12), 1428–1442 (2005)

    Google Scholar 

  55. Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector machine learning. In: Advances in neural information processing systems (2001)

  56. Andridge, R.R., Little, R.J.: A review of hot deck imputation for survey non-response. Int. Stat. Rev. 78(1), 40–64 (2010)

    Google Scholar 

  57. Myers, T.A.: Goodbye, listwise deletion: presenting hot deck imputation as an easy and effective tool for handling missing data. Commun. Methods Meas. 5(4), 297–310 (2011)

    Google Scholar 

  58. Sim, J., Lee, J.S., Kwon, O.: Missing values and optimal selection of an imputation method and classification algorithm to improve the accuracy of ubiquitous computing applications. Math. Probl. Eng. (2015). https://doi.org/10.1155/2015/538613

    Article  Google Scholar 

  59. Nahato, K.B., Harichandran, K.N., Arputharaj, K.: Knowledge mining from clinical datasets using rough sets and backpropagation neural network. Comput. Math. Methods Med. (2015). https://doi.org/10.1155/2015/460189

    Article  Google Scholar 

  60. Nilashi, M., Ibrahim, O., Ahani, A.: Accuracy improvement for predicting Parkinson’s disease progression. Sci. Rep. 6, 34181 (2016)

    Google Scholar 

  61. Nilashi, M., et al.: A soft computing method for mesothelioma disease classification. J. Soft Comput. Decis. Support Syst. 4(1), 16–18 (2017)

    Google Scholar 

  62. Nilashi, M., et al.: An analytical method for diseases prediction using machine learning techniques. Comput. Chem. Eng. 106, 212–223 (2017)

    Google Scholar 

  63. Nilashi, M., et al.: Accuracy improvement for diabetes disease classification: a case on a public medical dataset. Fuzzy Inform. Eng. 9(3), 345–357 (2017)

    Google Scholar 

  64. Ahmadi, N., et al.: An intelligent method for iris recognition using supervised machine learning techniques. Opt. Laser Technol. 120, 105701 (2019)

    Google Scholar 

  65. Santhanam, T., Padmavathi, M.: Application of K-means and genetic algorithms for dimension reduction by integrating SVM for diabetes diagnosis. Procedia Comput. Sci. 47, 76–83 (2015)

    Google Scholar 

  66. Zheng, B., Yoon, S.W., Lam, S.S.: Breast cancer diagnosis based on feature extraction using a hybrid of K-means and support vector machine algorithms. Expert Syst. Appl. 41(4), 1476–1482 (2014)

    Google Scholar 

  67. Hariharan, M., Polat, K., Sindhu, R.: A new hybrid intelligent system for accurate detection of Parkinson’s disease. Comput. Methods Programs Biomed. 113(3), 904–913 (2014)

    Google Scholar 

  68. Ortiz, A., et al.: LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer’s disease. Pattern Recogn. Lett. 34(14), 1725–1733 (2013)

    Google Scholar 

  69. Toro, C., et al.: Supervoxels-based histon as a new alzheimer’s disease imaging biomarker. Sensors 18(6), 1752 (2018)

    Google Scholar 

  70. Ahmed, H., et al.: Heart disease identification from patients’ social posts, machine learning solution on Spark. Future Gener. Comput. Syst. (2019). https://doi.org/10.1016/j.future.2019.09.056

    Article  Google Scholar 

  71. Pumo, D., et al.: Sensitivity of extreme rainfall to temperature in semi-arid Mediterranean regions. Atmos. Res. 225, 30–44 (2019)

    Google Scholar 

  72. Lee, J.-H., et al.: Modeling landslide susceptibility in data-scarce environments using optimized data mining and statistical methods. Geomorphology 303, 284–298 (2018)

    Google Scholar 

  73. Aguilera, A.M., Escabias, M., Valderrama, M.J.: Using principal components for estimating logistic regression with high-dimensional multicollinear data. Comput. Stat. Data Anal. 50(8), 1905–1924 (2006)

    MathSciNet  MATH  Google Scholar 

  74. Kim, M.-J., Kim, H.-B., Kang, D.-K.: Optimizing SVM ensembles using genetic algorithms in bankruptcy prediction. J. Inform. Commun. Converg. Eng. 8(4), 370–376 (2010)

    Google Scholar 

  75. Ramezani, M., Karimian, A., Moallem, P.: Automatic detection of malignant melanoma using macroscopic images. J. Med. Signals Sensors 4(4), 281 (2014)

    Google Scholar 

  76. Cattell, R.B.: The scree test for the number of factors. Multivar. Behav. Res. 1(2), 245–276 (1966)

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehrbakhsh Nilashi or Elnaz Akbari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilashi, M., Ahmadi, H., Manaf, A.A. et al. Coronary Heart Disease Diagnosis Through Self-Organizing Map and Fuzzy Support Vector Machine with Incremental Updates. Int. J. Fuzzy Syst. 22, 1376–1388 (2020). https://doi.org/10.1007/s40815-020-00828-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00828-7

Keywords

Navigation