Skip to main content
Log in

Deadbeat Predictive Power Control with Fuzzy PI Compound Controller and Power Predictive Corrector for PWM Rectifier Under Unbalanced Grid Conditions

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Under unbalanced grid conditions, the DC side voltage of pulse width modulation (PWM) rectifier will overshoot during start-up and reference voltage transients, which may lead to system instability. In this paper, a deadbeat predictive power control (DPPC) with fuzzy PI compound controller (FPCC) and power predictive corrector (PPC) is proposed to solve that problem. Firstly, the parameters of the PI controller are adjusted online by the fuzzy control rule of the FPCC to eliminate the overshoot of the DC side voltage and contribute to faster dynamic responses, which thereby could correct the reference active power. Secondly, the static error between the reference and system active powers is reduced by accumulative predictive errors in the PPC. The simulation is carried out under ideal and unbalanced grid conditions. The result shows that the proposed control scheme can effectively eliminate the overshoot of DC voltage, reduce the static error of active power, and improve the dynamic response and anti-interference ability of the rectifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Jose, R., Juan, D., Jose, R.E., Jorge, P., Pablo, L.: PWM regenerative rectifiers: state of the art. IEEE Trans. Ind. Electron. 52(1), 5–22 (2005)

    Article  Google Scholar 

  2. Bhim, S., Brij, N.S., Ambrish, C., Kamal, A., Ashish, P., Dwarka, P.K.: A review of three-phase improved power quality AC-DC converters. IEEE Trans. Ind. Electron. 51(3), 641–660 (2004)

    Article  Google Scholar 

  3. Vladimir, B., Vikram, K.: A new mathematical model and control of a three-phase AC-DC voltage source converter. IEEE Trans. Power Electron. 12(1), 116–123 (1997)

    Google Scholar 

  4. Toshihiko, N.H.T., Seiji, K., Isao, T.: Direct power control of PWM converter without power-source voltage sensors. IEEE Trans. Ind. Appl. 34(3), 473–479 (1998)

    Article  Google Scholar 

  5. Sergio, V., Jose, I.L., Leopoldo, G.F., Jose, R.: Model predictive control: a review of its applications in power electronics. IEEE Ind. Electron. Mag. 8(1), 16–31 (2014)

    Article  Google Scholar 

  6. Panagiotis, K., Haitham, A.: Deadbeat predictive control for PMSM drives with 3-L NPC inverter accounting for saturation effects. IEEE. J. Emerg. Sel. Topics Power Electron. 6(4), 1671–1680 (2018)

    Article  Google Scholar 

  7. Alejandro, Y., Ana, V., Jano, M., Oscar, L.: Tuning method aimed at optimized settling time and overshoot for synchronous proportional-integral current control in electric machines. IEEE Trans. Power Electron. 29(6), 3041–3054 (2014)

    Article  Google Scholar 

  8. Mariusz, M., Marian, P., Andrzej, M.: A comparative study of control techniques for PWM rectifiers in AC adjustable speed drives. IEEE Trans. Power Electron. 18(6), 1390–1396 (2003)

    Article  Google Scholar 

  9. Zhang, X., Hou, B., Mei, Y.: Deadbeat predictive current control of permanent-magnet synchronous motors with stator current and disturbance observer. IEEE Trans. Power Electron. 32(5), 3818–3834 (2017)

    Article  Google Scholar 

  10. Wang, Y.L., Wang, X.C., Xie, W., Wang, F.X., Dou, M.F., Ralph, M., Robert, D.L., Dieter, G.: Deadbeat model-predictive torque control with discrete space-vector modulation for PMSM drives. IEEE Trans. Ind. Electron. 64(5), 3537–3547 (2017)

    Article  Google Scholar 

  11. Song, W., Ma, J., Zhou, L., Feng, X.: Deadbeat predictive power control of single-phase three-level neutral-point-clamped converters using space-vector modulation for electric railway traction. IEEE Trans. Power Electron. 31(1), 721–732 (2016)

    Article  Google Scholar 

  12. Abdelouahab, B., Jean-Paul, G., Fateh, K.: Predictive direct power control of three-phase pulsewidth modulation (PWM) rectifier using space-vector modulation (SVM). IEEE Trans. Power Electron. 25(1), 228–236 (2010)

    Article  Google Scholar 

  13. Sangshin, K., Un-chul, M., Jun-cheol, P.: Predictive-control-based direct power control with an adaptive parameter identification technique for improved AFE performance. IEEE Trans. Power Electron. 29(11), 6178–6187 (2014)

    Article  Google Scholar 

  14. Zhang, Y., Qu, C.: Direct power control of a pulse width modulation rectifier using space vector modulation under unbalanced grid voltages. IEEE Trans. Power Electron. 30(10), 5892–5901 (2015)

    Article  Google Scholar 

  15. Bilal, A., Luca, T., Pericle, Z., Jon, C.C., Marco, D.: Grid parameter estimation using model predictive direct power control. IEEE Trans. Ind. Appl. 51(6), 4614–4622 (2015)

    Article  Google Scholar 

  16. Seok-Kyoon, K., Dae-Keun, C., Kyo-Beum, Lee: Offset-free model predictive control for the power control of three-phase AC/DC converters. IEEE Trans. Ind. Electron. 62(11), 7114–7126 (2015)

    Article  Google Scholar 

  17. Song, W., Deng, Z., Wang, S., Feng, X.: A simple model predictive power control strategy for single-phase PWM converters with modulation function optimization. IEEE Trans. Power Electron. 31(7), 5279–5289 (2016)

    Google Scholar 

  18. He, J.P., Jun, Y.J., Gong, B.: Analysis of start-up inrush current and its mitigation control strategy for grid connected voltage source inverter. In: IEEE conference and expos transportation electrification Asia-Pacific. 3(1), 127–128 (2014)

  19. Wang, E.D., Huang, S.H.: A novel double closed loops control of the three-phase voltage-sourced PWM rectifier. Proc. CSEE 32(15), 24–30 (2012)

    Google Scholar 

  20. Jiang, W.D., Li, W.M., She, Y.Y.: Control strategy for PWM rectifier based on feedback of the energy stored in capacitor and load power feed-forward. Trans. China Electrotech. Soc. 30(8), 151–158 (2015)

    Google Scholar 

  21. Lu, X., Xie, Y.X., Gui, C.B., Cheng, Li: Nonlinear control of three-phase PWM rectifier based on multi-Sliding mode variable structure control. Trans. China Electrotech. Soc. 31(4), 79–87 (2016)

    Google Scholar 

  22. Zheng, Z.J., Wang, N., Sun, Z.: Fuzzy PI compound control of PWM rectifiers with applications to marine vehicle electric propulsion system. Int. J. Fuzzy Syst. 20(2), 587–596 (2018)

    Article  MathSciNet  Google Scholar 

  23. Yang, H.T., Zhang, Y.C., Liang, J.Y., Liu, J., Zhang, N., Paul, D.W.: Robust deadbeat predictive power control with a discrete-time disturbance observer for PWM rectifiers under unbalanced grid conditions. IEEE Trans. Power Electron. 27(1), 287–300 (2019)

    Article  Google Scholar 

  24. Ma, M., Chen, W.J., Marco, L., Frede, B.: Power controllability of a three-phase converter with an unbalanced AC source. IEEE Trans. Power Electron. 30(3), 1591–1604 (2015)

    Article  Google Scholar 

  25. Hong-Seok, S., Kwanghee, N.: Dual current control scheme for PWM converter under unbalanced input voltage conditions. IEEE Trans. Power Electron. 46(5), 953–959 (1999)

    Google Scholar 

  26. Zhang, Y.C., Bai, Y.N., Yang, H.T.: A universal multiple-vector-based model predictive control of induction motor drives. IEEE Trans. Power Electron. 33(8), 6957–6969 (2018)

    Article  Google Scholar 

  27. Zhang, Y.C., Gao, J.H., Qu, C.Q.: Relationship between two direct power control methods for PWM rectifiers under unbalanced network. IEEE Trans. Power Electron. 34(5), 4084–4094 (2017)

    Article  Google Scholar 

  28. Yang, L.Y., Chang, Z.G., Li, Z.H.: A novel fuzzy logic controller and antiwindup PI controller for three-phase PWM rectifier*. In: 2009 international conference on mechatronics and automation (ICMA), PP. 1952–1956 (2009)

  29. Wang, N., Er, M.J.: Direct adaptive fuzzy tracking control of marine vehicles with fully unknown parametric dynamics and uncertainties. IEEE Trans. Control Syst. Technol. 24(5), 1845–1852 (2016)

    Article  Google Scholar 

  30. Wang, N., Su, S.F., Yin, J., Zheng, Z., Er, M.J.: Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: an adaptive universe-based fuzzy control approach. IEEE Trans. Fuzzy Syst. 26(3), 1613–1625 (2018)

    Article  Google Scholar 

  31. Su, S.F., Chen, M.C., Hsueh, Y.C.: A novel fuzzy modeling structure-decomposed fuzzy system. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2311–2317 (2017)

    Article  Google Scholar 

  32. Wang, N., Sun, Z., Zheng, Z., Zhao, H.: Finite-time sideslip observer-based adaptive fuzzy path-following control of underactuated marine vehicles with time-varying large sideslip. Int. J. Fuzzy Syst. 20(6), 1767–1778 (2018)

    Article  MathSciNet  Google Scholar 

  33. Chang, C.W., Tao, C.W., Chuang, C.C.: Design of a DSP-based PD-like fuzzy controller for buck DC-DC converters. Int. J. Fuzzy Syst. 18(6), 971–979 (2016)

    Article  MathSciNet  Google Scholar 

  34. Wang, N., Sun, J.C., Er, M.J.: Tracking-error-based universal adaptive fuzzy control for output tracking of nonlinear systems with completely unknown dynamics. IEEE Trans. Fuzzy Syst. 26(2), 869–883 (2018)

    Article  Google Scholar 

  35. Yang, H.T., Zhang, Y.C., Liang, J.Y., Zhang, N., Paul D.W.: A robust deadbeat predictive power control with sliding mode disturbance observer for PWM rectifiers. In: 2017 IEEE energy conversion congress and exposition (ECCE) (2017)

  36. Ying-Yu, T., Rong-Shyang, O., Shih-Liang, J., Meng-Yueh, C.: High-performance programmable AC power source with low harmonic distortion using DSP-based repetitive control technique. IEEE Trans. Power Electron. 12(4), 715–725 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Hunan Provincial Department of Education,Hunan Provincial Natural Science Foundation of China (Grant Numbers 17C0469, 2018JJ3127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuxian Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Cheng, W., Xiao, Q. et al. Deadbeat Predictive Power Control with Fuzzy PI Compound Controller and Power Predictive Corrector for PWM Rectifier Under Unbalanced Grid Conditions. Int. J. Fuzzy Syst. 22, 1277–1288 (2020). https://doi.org/10.1007/s40815-020-00847-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00847-4

Keywords

Navigation