Skip to main content

Advertisement

Log in

Fuzzy Control for Uncertain Electric Vehicle Systems with Sensor Failures and Actuator Saturation

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper considers the yaw-moment control issue for uncertain electric vehicle systems with sensor failures and actuator saturation. By employing the interval type-2 (IT2) fuzzy approach, the uncertain electric vehicle systems are constructed as an IT2 fuzzy model. In this model, the parameter uncertainties are described through the membership functions (MFs) with lower and upper bounds. Then, an IT2 fuzzy state-feedback controller, which can share different MFs with the IT2 fuzzy model, is designed. The sensor failures can be quantified by a variable varying in a given interval. Meanwhile, the saturation nonlinearities can be handled by employing a norm-bounded strategy. By means of the Lyapunov stability approach, sufficient conditions of the controller design are derived to achieve the desired performance. Finally, simulation results based on the electric vehicle systems are presented to demonstrate the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chan, C.C., Bouscayrol, A., Chen, K.: Electric, hybrid, and fuel-cell vehicles: architectures and modeling. IEEE Trans. Veh. Technol. 59(2), 589–598 (2010)

    Google Scholar 

  2. Jing, H., Wang, R., Wang, J., Nan, C.: Robust \(H_{\infty }\) dynamic output-feedback control for four-wheel independently actuated electric ground vehicles through integrated AFS/DYC. J. Frankl. Inst. 355(18), 9321–9350 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Zhao, X., Mo, H., Yan, K., Li, L.: Type-2 fuzzy control for driving state and behavioral decisions of unmanned vehicle. IEEE/CAA J. Autom. Sinica. 7(1), 178–186 (2019)

    Google Scholar 

  4. Liu, Q., Zhang, H., Leng, J., Chen, X.: Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system. Int. J. Prod. Res. 57(12), 3903–3919 (2019)

    Google Scholar 

  5. Leng, J., Zhang, H., Yan, D., Liu, Q., Chen, X., Zhang, D.: Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop. J. Ambient. Intell. Humanized. Comput. 10(3), 1155–1166 (2019)

    Google Scholar 

  6. Wang, J., Longoria, R.G.: Coordinated and reconfigurable vehicle dynamics control. IEEE Trans. Control. Syst. Technol. 17(3), 723–732 (2009)

    Google Scholar 

  7. Boada, B.L., Boada, M.J.L., Diaz, V.: Fuzzy-logic applied to yaw moment control for vehicle stability. Veh. Syst. Dyn. 43(10), 753–770 (2005)

    Google Scholar 

  8. Yang, X., Wang, Z., Peng, W.: Coordinated control of AFS and DYC for vehicle handling and stability based on optimal guaranteed cost theory. Veh Syst Dyn 47(1), 57–79 (2009)

    Google Scholar 

  9. Esmailzadeh, E., Goodarzi, A., Vossoughi, G.R.: Optimal yaw moment control law for improved vehicle handling. Mechatronics 13(7), 659–675 (2003)

    Google Scholar 

  10. Chen, L., Li, X., Xiao, W., Li, P., Zhou, Q.: Fault-tolerant control for uncertain vehicle active steering systems with time-delay and actuator fault. Int. J. Control. Autom. Syst. 17(9), 2234–2241 (2019)

    Google Scholar 

  11. Wang, R., Jing, H., Hu, C., Chadli, M., Yan, F.: Robust \(H_{\infty }\) output-feedback yaw control for in-wheel motor driven electric vehicles with differential steering. Neurocomputing 173(3), 676–684 (2016)

    Google Scholar 

  12. Kazemi, R., Janbakhsh, A.A.: Nonlinear adaptive sliding mode control for vehicle handling improvement via steer-by-wire. Int. J. Autom. Technol. 11(3), 345–354 (2010)

    Google Scholar 

  13. Chao, H., Naghdy, F., Du, H.: Observer-based fault tolerant controller for uncertain steer-by-wire systems using the delta operator. IEEE/ASME Trans. Mechatron. 23(6), 2587–2598 (2018)

    Google Scholar 

  14. Mirzaei, M.: A new strategy for minimum usage of external yaw moment in vehicle dynamic control system. Trans. Res. Part C 18(2), 213–224 (2010)

    Google Scholar 

  15. Wang, W., Liang, H., Pan, Y., Li, T.: Prescribed performance adaptive fuzzy containment control for nonlinear multi-agent systems using disturbance observer. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.2969499

    Article  Google Scholar 

  16. Zhou, Q., Du, P., Li, H., Lu, R., Yang, J.: Adaptive fixed-time control of error-constrained pure-feedback interconnected nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2961371

    Article  Google Scholar 

  17. Commault, C., Dion, J.M., Trinh, D.H.: Observability preservation under sensor failure. IEEE Trans. Autom. Control 53(6), 1554–1559 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Zhang, Z., Liang, H., Ma, H., Pan, Y.: Reliable fuzzy control for uncertain vehicle suspension systems with random incomplete transmission signals and sensor failure. Mech. Syst. Signal Process. 130, 776–789 (2019)

    Google Scholar 

  19. Su, X., Shi, P., Wu, L., Basin, M.V.: Reliable filtering with strict dissipativity for T-S fuzzy time-delay systems. IEEE Trans. Cybern. 44(12), 2470–2483 (2014)

    Google Scholar 

  20. Tian, E., Yue, D., Yang, T.C., Gu, Z., Lu, G.: T-S fuzzy model-based robust stabilization for networked control systems with probabilistic sensor and actuator failure. IEEE Trans. Fuzzy Syst. 19(3), 553–561 (2011)

    Google Scholar 

  21. Li, Y., Tong, S.: Fuzzy adaptive backstepping decentralized control for switched nonlinear large-scale systems with switching jumps. Int. J. Fuzzy Syst. 17(1), 12–21 (2015)

    MathSciNet  Google Scholar 

  22. Lv, Y., Hu, Q., Ma, G., Zhou, J.: 6 DOF synchronized control for spacecraft formation flying with input constraint and parameter uncertainties. ISA Transact. 50(4), 573–580 (2011)

    Google Scholar 

  23. Zhou, Q., Wang, W., Ma, H., Li, H.: Event-triggered fuzzy adaptive containment control for nonlinear multi-agent systems with unknown bouc-wen hysteresis input. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2961642

    Article  Google Scholar 

  24. Bai, W., Zhou, Q., Li, T., Li, H.: Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.292105

    Article  Google Scholar 

  25. Du, H., Zhang, N., Dong, G.: Stabilizing vehicle lateral dynamics with considerations of parameter uncertainties and control saturation through robust yaw control. IEEE Trans. Veh. Technol. 59(5), 2593–2597 (2010)

    Google Scholar 

  26. Li, H., Wang, J., Shi, P.: Output-feedback based sliding mode control for fuzzy systems with actuator saturation. IEEE Trans. Fuzzy Syst. 24(6), 1282–1293 (2016)

    Google Scholar 

  27. Sun, W., Zhao, Z., Gao, H.: Saturated adaptive robust control for active suspension systems. IEEE Trans. Ind. Electron. 60(9), 3889–3896 (2013)

    Google Scholar 

  28. Chen, L., Li, P., Lin, W., Zhou, Q.: Observer-based fuzzy control for four-wheel independently driven electric vehicles with active steering systems. Int. J. Fuzzy Syst. 22(1), 89–100 (2020)

    MathSciNet  Google Scholar 

  29. Wang, N., Sun, Z., Su, S.F., Wang, Y.: Fuzzy uncertainty observer-based path-following control of underactuated marine vehicles with unmodeled dynamics and disturbances. Int. J. Fuzzy Syst. 20(8), 2593–2604 (2018)

    MathSciNet  Google Scholar 

  30. Zhou, Q., Wang, W., Liang, H., Basin, M., Wang, B.: Observer-based event-triggered fuzzy adaptive bipartite containment control of multi-agent systems with input quantization. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2953573

    Article  Google Scholar 

  31. Tong, M., Lin, W., Huo, X., Jin, Z., Miao, C., Wang, B.: A model-free fuzzy adaptive trajectory tracking control algorithm based on dynamic surface control. Int. J. Adv. Robot. Syst. (2020). https://doi.org/10.1177/1729881419894417

    Article  Google Scholar 

  32. Linda, O., Manic, M.: Uncertainty-robust design of interval type-2 fuzzy logic controller for delta parallel robot. IEEE Trans. Ind. Inform. 7(4), 661–670 (2011)

    Google Scholar 

  33. Pan, Y., Yang, G.H.: Event-triggered fuzzy control for nonlinear networked control systems. Fuzzy Sets Syst. 329(15), 91–107 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Wang, H., Kang, S., Feng, Z.: Finite-time adaptive fuzzy command filtered backstepping control for a class of nonlinear systems. Int. J. Fuzzy Syst. 21(8), 2575–2587 (2019)

    MathSciNet  Google Scholar 

  35. Wang, N., Sun, Z., Zheng, Z., Zhao, H.: Finite-time sideslip observer-based adaptive fuzzy path-following control of underactuated marine vehicles with time-varying large sideslip. Int. J. Fuzzy Syst. 20(6), 1767–1778 (2018)

    MathSciNet  Google Scholar 

  36. Xie, G., Sun, L., Wen, T., Hei, X., Qian, F.: Adaptive transition probability matrix-based parallel IMM algorithm. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2922305

    Article  Google Scholar 

  37. Lam, H.K., Li, H., Deters, C., Secco, E.L., Wurdemann, H.A., Althoefer, K.: Control design for interval type-2 fuzzy systems under imperfect premise matching. IEEE Trans. Ind. Electron. 61(2), 956–968 (2014)

    Google Scholar 

  38. Pan, Y., Yang, G.H.: Event-triggered fault detection filter design for nonlinear networked systems. IEEE Trans. Syst. Man. Cybern. Syst. 48(11), 1851–1862 (2018)

    Google Scholar 

  39. Li, H., Sun, X., Wu, L., Lam, H.K.: State and output feedback control of a class of fuzzy systems with mismatched membership functions. IEEE Trans. Fuzzy Syst. 23(6), 1943–1957 (2015)

    Google Scholar 

  40. Lam, H.K., Seneviratne, L.D.: Stability analysis of interval type-2 fuzzy-model-based control systems. IEEE Trans. Syst. Man Cybern. 38(3), 617–628 (2008)

    Google Scholar 

  41. Hagras, H.A.: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12(4), 524–539 (2004)

    Google Scholar 

  42. Zhang, Z., Niu, Y., Song, J.: Input-to-state stabilization of interval type-2 fuzzy systems subject to cyberattacks: an observer-based adaptive sliding mode approach. IEEE Trans. Fuzzy Syst. 28(1), 190–203 (2020)

    Google Scholar 

  43. Zhao, Yue, Wang, J., Yan, Fei, Shen, Yi: Adaptive sliding mode fault-tolerant control for type-2 fuzzy systems with distributed delays. Inform. Sci. 473, 227–238 (2019)

    MathSciNet  Google Scholar 

  44. Du, H., Zhang, N., Samali, B., Naghdy, F.: Robust sampled-data control of structures subject to parameter uncertainties and actuator saturation. Eng. Struct. 36, 39–48 (2012)

    Google Scholar 

  45. Wang, R., Zhang, H., Wang, J.: Linear parameter-varying controller design for four-wheel independently actuated electric ground vehicles with active steering systems. IEEE Trans. Control Syst. Technol. 22(4), 1281–1296 (2014)

    Google Scholar 

  46. Du, H., Zhang, N.: Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint. IEEE Trans. Fuzzy Syst. 17(2), 343–356 (2009)

    Google Scholar 

  47. Zhang, Z., Li, H., Wu, C., Zhou, Q.: Finite frequency fuzzy \(H_{\infty }\) control for uncertain active suspension systems with sensor failure. IEEE/CAA J. Autom. Sinica. 5(4), 777–786 (2018)

    MathSciNet  Google Scholar 

  48. Cao, Y.Y., Lin, Z.: Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation. IEEE Trans. Fuzzy Syst. 11(1), 57–67 (2003)

    Google Scholar 

  49. Yao, D., Li, H., Lu, R., Shi, Y.: Distributed sliding mode tracking control of second-order nonlinear multi-agent systems: an event-triggered approach. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2963087

    Article  Google Scholar 

  50. Liu, Y., Liu, X., Jing, Y., Wang, H., Li, X.: Annular domain finite-time connective control for large-scale systems with expanding construction. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2960009

    Article  Google Scholar 

  51. Wen, S., Chen, M.Z.Q., Zeng, Z., Yu, X., Huang, T.: Fuzzy control for uncertain vehicle active suspension systems via dynamic sliding-mode approach. IEEE Trans. Syst. Man Cybern. Syst. 47(1), 24–32 (2017)

    Google Scholar 

  52. Wu, C., Wu, L., Liu, J., Jiang, Z.-P.: Active defense-based resilient sliding mode control under denial-of-service attacks. IEEE Trans. Inf. Forensics Security. 15, 237–249 (2019)

    Google Scholar 

  53. Wu, C., Hu, Z., Liu, J., Wu, L.: Secure estimation for cyber-physical systems via sliding mode. IEEE Trans. Cybern. 48(12), 3420–3431 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (61973091), the Guangdong Natural Science Funds for Distinguished Young Scholar (2017A030306014), the Local Innovative and Research Teams Project of Guangdong Special Support Program of 2019, the Innovative Research Team Program of Guangdong Province Science Foundation (2018B030312006) and the Science and Technology Program of Guangzhou (201904020006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Chen, L. & Zhou, Q. Fuzzy Control for Uncertain Electric Vehicle Systems with Sensor Failures and Actuator Saturation. Int. J. Fuzzy Syst. 22, 1444–1453 (2020). https://doi.org/10.1007/s40815-020-00869-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00869-y

Keywords

Navigation