Skip to main content
Log in

Adaptive Robust Control and Optimal Design for Fuzzy Unmanned Helicopter Tail Reduction

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper develops an adaptive robust control scheme combined with optimal design for the unmanned helicopter tail reduction (UHTR) system. The dynamical model of the UHTR system with uncertainties is established. The uncertainties are assumed to be bounded and expressed by fuzzy set theory. With this prerequisite, an adaptive robust controller is proposed to drive the system to meet the trajectory requirements approximately. The adaptive law with leakage and dead zone is performance based and flexibly adjustable. By means of Lyapunov stability theorem, the UHTR system is both uniform bounded and uniform ultimate bounded with the proposed controller. The control scheme is deterministic rather than fuzzy if-then rules-based control. Moreover, the fuzzy performance index which contains the steady-state system performance and control cost is presented. In this way, the optimal design problem can be replaced by minimizing the performance index. Overall, the resulting control scheme can guarantee deterministic performance of the UHTR system and minimize the fuzzy performance index simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Alvarenga, J., Vitzilaios, N.I., Valavanis, K.P., Rutherford, M.J.: Survey of unmanned helicopter model-based navigation and control techniques. J. Intell. Robot. Syst. 80(1), 87–138 (2015)

    Article  Google Scholar 

  2. Chen, X.X., Liu, Y., Hu, X.W., Qian, Y., Wang, J.H.: Velocity control of unmanned helicopter based on fuzzy-pid. Adv. Mater. Res. 756–759, 327–331 (2013)

    Article  Google Scholar 

  3. Sanchez, E.N., Becerra, H.M., Velez, C.M.: Combining fuzzy, PID and regulation control for an autonomous mini-helicopter. Inf. Sci. 177(10), 1999–2022 (2007)

    Article  Google Scholar 

  4. Jiang, T., Lin, D., Song, T.: Finite-time control for small scale unmanned helicopter with disturbances. Nonlinear Dyn. 96(3), 1747–1763 (2019)

    Article  MATH  Google Scholar 

  5. Yokoyama, N.: Inference of aircraft intent via inverse optimal control including second-order optimality condition. J. Guid. Control Dyn. 41(2), 349–359 (2017)

    Article  Google Scholar 

  6. Ma, H., Chen, M., Wu, Q.: Inverse optimal control for unmanned aerial helicopters with disturbances. Optim. Control Appl. Methods 40(1), 152–171 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Razzaghian, A., Moghaddam, R.K.: Adaptive fuzzy sliding mode control for a model-scaled unmanned helicopter. J. Fuzzy Set Valued Anal. 2016(3), 286–302 (2016)

    Article  Google Scholar 

  8. Zeghlache, S., Benslimane, T., Amardjia, N., Bouguerra, A.: Interval type-2 fuzzy sliding mode controller based on nonlinear observer for a 3-DOF helicopter with uncertainties. Int. J. Fuzzy Syst. 19, 1444–1463 (2017)

    Article  MathSciNet  Google Scholar 

  9. Zhu, B.: Nonlinear adaptive neural network control for a model-scaled unmanned helicopter. Nonlinear Dyn. 78(3), 1695–1708 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Horn, J.F., Schmidt, E.M., Geiger, B.R., DeAngelo, M.P.: Neural network-based trajectory optimization for unmanned aerial vehicles. J. Guid. Control Dyn. 35(2), 548–562 (2012)

    Article  Google Scholar 

  11. Chen, F., Jiang, B., Tao, G.: Fault self-repairing flight control of a small helicopter via fuzzy feedforward and quantum control techniques. Cogn. Comput. 4(4), 543–548 (2012)

    Article  Google Scholar 

  12. Aboudonia, A., El-Badawy, A., Rashad, R.: Disturbance observer-based feedback linearization control of an unmanned quadrotor helicopter. Proc. Inst. Mech. Eng. Part I-J Syst Control Eng. 230(9), 877–891 (2016)

    Article  MATH  Google Scholar 

  13. Li, R., Wu, Q., Chen, M.: Robust adaptive control for unmanned helicopter with stochastic disturbance. Procedia Comput. Sci. 105, 209–214 (2017)

    Article  Google Scholar 

  14. Kang, Y., Chen, S., Wang, X., Cao, Y.: Deep convolutional identifier for dynamic modeling and adaptive control of unmanned helicopter. IEEE Trans. Neural Netw. Learn. Syst. 30(2), 524–538 (2018)

    Article  MathSciNet  Google Scholar 

  15. Yang, J.-H., Hsu, W.-C.: Adaptive backstepping control for electrically driven unmanned helicopter. Control Eng. Pract. 17(8), 903–913 (2009)

    Article  Google Scholar 

  16. Blanco-Mesa, F., Merigó, J.M., Gil-Lafuente, A.M.: Fuzzy decision making: a bibliometric-based review. J. Intell. Fuzzy Syst. 32(3), 2033–2050 (2017)

    Article  Google Scholar 

  17. Li, C., Tang, M., Zhang, G., Wang, R., Tian, C.: A hybrid short-term building electrical load forecasting model combining the periodic pattern, fuzzy system, and wavelet transform. Int. J. Fuzzy Syst. 22(1), 156–171 (2020)

    Article  Google Scholar 

  18. Li, Y., Sui, S., Tong, S.: Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics. IEEE Trans. Cybern. 47(2), 403–414 (2016)

    Google Scholar 

  19. Xiang, X., Yu, C., Lapierre, L., Zhang, J., Zhang, Q.: Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles. Int. J. Fuzzy Syst. 20(2), 572–586 (2018)

    Article  MathSciNet  Google Scholar 

  20. Dong, F., Chen, Y.H., Zhao, X.: Optimal design of adaptive robust control for fuzzy swarm robot systems. Int. J. Fuzzy Syst. 21(4), 1059–1072 (2019)

    Article  MathSciNet  Google Scholar 

  21. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  22. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 3(1), 28–44 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mamdani, E.: Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Trans. Comput. 26(12), 1182–1191 (1977)

    Article  MATH  Google Scholar 

  24. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  25. Tong, S., Li, Y.: Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 20(1), 168–180 (2011)

    Article  Google Scholar 

  26. Tong, S., Sun, K., Sui, S.: Observer-based adaptive fuzzy decentralized optimal control design for strict-feedback nonlinear large-scale systems. IEEE Trans. Fuzzy Syst. 26(2), 569–584 (2017)

    Article  Google Scholar 

  27. Li, Y., Sun, K., Tong, S.: Observer-based adaptive fuzzy fault-tolerant optimal control for SISO nonlinear systems. IEEE Trans. Cybern. 49(2), 649–661 (2018)

    Article  Google Scholar 

  28. Liang, H., Zhang, L., Sun, Y., Huang, T.: Containment control of semi-Markovian multiagent systems with switching topologies. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2946248

    Article  Google Scholar 

  29. Zhang, L., Lam, H.K., Sun, Y., Liang, H.: Fault detection for fuzzy semi-Markov jump systems based on interval type-2 fuzzy approach. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2936333

    Article  Google Scholar 

  30. Kalaba, R.E., Udwadia, F.E.: Lagrangian mechanics, Gauss principle, quadratic programming, and generalized inverses: new equations for non-holonomically constrained discrete mechanical systems. Q. Appl. Math. 52(2), 229–241 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Udwadia, F.E., Kalaba, R.E.: Explicit equations of motion for mechanical systems with nonideal constraints. J. Appl. Mech. 68(3), 462–467 (2000)

    Article  MATH  Google Scholar 

  32. Udwadia, F.E., Kalaba, R.E.: Analytical dynamics: a new approach. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  33. Bimbhra, P.S.: Electrical machinery. Khanna Publishers, Newzhi Delhi (1975)

    Google Scholar 

  34. Sun, H., Zhao, H., Huang, K., Qiu, M., Zhen, S., Chen, Y.-H.: A fuzzy approach for optimal robust control design of an automotive electronic throttle system. IEEE Trans. Fuzzy Syst. 26(2), 694–704 (2017)

    Article  Google Scholar 

  35. Chen, Y.-H.: A new approach to the control design of fuzzy dynamical systems. J. Dyn. Syst. Meas. Control-Trans. ASME 133, 061019 (2011)

    Article  Google Scholar 

  36. Xu, J., Fang, H., Zeng, F., Chen, Y.H., Guo, H.: Robust observer design and fuzzy optimization for uncertain dynamic systems. Int. J. Fuzzy Syst. 21(5), 1511–1523 (2019)

    Article  MathSciNet  Google Scholar 

  37. Sun, H., Yu, R., Chen, Y.-H., Zhao, H.: Optimal design of robust control for fuzzy mechanical systems: performance based leakage and confidence-index measure. IEEE Trans. Fuzzy Syst. 27(7), 1441–1455 (2019)

    Article  Google Scholar 

  38. Wang, X., Zhao, H., Sun, Q., Chen, Y.-H.: A new highorder adaptive robust control for constraint following of mechanical systems. Asian J. Control 19(5), 1672–1687 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Chen, Y.: On the deterministic performance of uncertain dynamical systems. Int. J. Control 43(5), 1557–1579 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hale, J.K.: Ordinary differential equations. Wiley, New York (1969)

    MATH  Google Scholar 

  41. Zhao, R., Chen, Y.-H., Jiao, S.: Optimal design of constraint-following control for fuzzy mechanical systems. IEEE Trans. Fuzzy Syst. 24(5), 1108–1120 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the “13th Five-Year” Special Technology Project for Army Aviation Equipment (No. 30103090201), and the Fundamental Research Funds for the Central Universities of China (No. PA2019GDPK0067; No. PA2019GDZC0101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Zhu, Z. & Sun, H. Adaptive Robust Control and Optimal Design for Fuzzy Unmanned Helicopter Tail Reduction. Int. J. Fuzzy Syst. 22, 1400–1415 (2020). https://doi.org/10.1007/s40815-020-00870-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00870-5

Keywords

Navigation