Skip to main content
Log in

Fuzzy Non-singular Terminal Sliding Mode Controller Design for Nonlinear Systems with Input Saturation

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The current work has proposed an approach to the controller design of a fuzzy non-singular terminal sliding mode (NTSM) for a type of planar systems with input saturation. On the basis of a modified version of NTSM, a category of saturated NTSM controller is first constructed to ensure that the states can reach the sliding surface and finite-time converge to the origin. On this basis, a fuzzy logic controller including two fuzzy input variables and a fuzzy output variable is developed to adaptively adjust the control gain such that the gain of the NTSM controller can be automatically minimized. This also implies that the chattering phenomenon encountered by most conventional sliding mode control (SMC) schemes can be significantly attenuated without sacrificing inherent properties. Finally, in comparison with a traditional SMC method, the superiority of the presented algorithm is confirmed by the comparative simulation results in terms of chattering alleviation and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li, H., Wu, Y., Chen, M.: Adaptive fault-tolerant tracking control for discrete-time multi-agent systems via reinforcement learning algorithm. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.2982168

    Article  Google Scholar 

  2. Shen, H., Li, F., Xu, S., Sreeram, V.: Slow state variables feedback stabilization for semi-Markov jump systems with singular perturbations. IEEE Trans. Autom. Control 63(8), 2709–2714 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Liang, H., Guo, X., Pan, Y., Huang, T.: Event-triggered fuzzy bipartite tracking control for network systems based on distributed reduced-order observers. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2982618

    Article  Google Scholar 

  4. Zhu, Z., Pan, Y., Zhou, Q., Lu, C.: Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2973950

    Article  Google Scholar 

  5. Wu, Y., Jiang, B., Wang, Y.: Incipient winding fault detection and diagnosis for squirrel-cage induction motors equipped on CRH trains. ISA Trans. 99, 488–495 (2020)

    Google Scholar 

  6. Wang, H., Mi, C., Cao, Z., Zheng, J., Man, Z., Jin, X., Tang, H.: Precise discrete-time steering control for robotic fish based on data-assisted technique and super-twisting-like algorithm. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2019.2962464

    Article  Google Scholar 

  7. Xiong, J., Chang, X.H., Yi, X.: Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization. Appl. Math. Comput. 338, 774–788 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Chang, X.H., Park, J.H., Shi, P.: Fuzzy resilient energy-to-peak filtering for continuous-time nonlinear systems. IEEE Trans. Fuzzy Syst. 25(6), 1576–1588 (2017)

    Google Scholar 

  9. Wu, Y., Jiang, B., Lu, N.: A descriptor system approach for estimation of incipient faults with application to high-speed railway traction devices. IEEE Trans. Syst. Man Cybern. Syst. 49(10), 2108–2118 (2019)

    Google Scholar 

  10. Ding, S., Chen, W.H., Mei, K., Murray-Smith, D.J.: Disturbance observer design for nonlinear systems represented by input-output models. IEEE Trans. Ind. Electron. 67(2), 1222–1232 (2020)

    Google Scholar 

  11. Rubio, J.D.J.: Robust feedback linearization for nonlinear processes control. ISA Trans. 74, 155–164 (2018)

    Google Scholar 

  12. Rubio, J.D.J., Ochoa, G., Mujica-Vargas, D., Garcia, E., Balcazar, R., Elias, I., Cruz, D.R., Juarez, C.F., Aguilar, A., Novoa, J.F.: Structure regulator for the perturbations attenuation in a quadrotor. IEEE Access 7(1), 138244–138252 (2019)

    Google Scholar 

  13. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Birkhäuser, Boston (2013)

    Google Scholar 

  14. Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–21 (1993)

    Google Scholar 

  15. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)

    MATH  Google Scholar 

  16. Ding, S., Levant, A., Li, S.: Simple homogeneous sliding-mode controller. Automatica 67(5), 22–32 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Ding, S., Liu, L., Zheng, W.X.: Sliding mode direct yaw-moment control design for in-wheel electric vehicles. IEEE Trans. Ind. Electron. 64(8), 6752–6762 (2017)

    Google Scholar 

  18. Hu, Y., Wang, H.: Robust tracking control for vehicle electronic throttle using adaptive dynamic sliding mode and extended state observer. Mech. Syst. Signal Process. 135, 1–18 (2020)

    Google Scholar 

  19. Mu, C., Xu, W., Sun, C.: On switching manifold design for terminal sliding mode control. J. Frankl. Inst. 353(7), 1553–1572 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Chu, Z., Xiang, X., Zhu, D., Luo, C., Xie, D.: Adaptive fuzzy sliding mode diving control for autonomous underwater vehicle with input constraint. Int. J. Fuzzy Syst. 20(5), 1460–1469 (2018)

    MathSciNet  Google Scholar 

  21. Chen, X., Park, J.H., Cao, J., Qiu, J.: Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances. Appl. Math. Comput. 308, 161–173 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Zheng, B.C., Park, J.H.: Sliding mode control design for linear systems subject to quantization parameter mismatch. J. Frankl. Inst. 353(1), 37–53 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Ding, S., Mei, K., Li, S.: A new second-order sliding mode and its application to nonlinear constrained systems. IEEE Trans. Autom. Control 64(6), 2545–2552 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Ding, S., Park, J.H., Chen, C.: Second-order sliding mode controller design with output constraint. Automatica 112, 108704 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Mei, K., Ding, S.: Second-order sliding mode controller design subject to an upper-triangular structure. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2875267

    Article  Google Scholar 

  26. Mobayen, S.: An adaptive fast terminal sliding mode control combined with global sliding mode scheme for tracking control of uncertain nonlinear third-order systems. Nonlinear Dyn. 82, 599–610 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Wu, Y., Yu, X., Man, Z.: Terminal sliding mode control design for uncertain dynamic systems. Syst. Control Lett. 34, 281–288 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Yu, X., Man, Z.: Model reference adaptive control systems with terminal sliding modes. Int. J. Control 64(6), 1165–1176 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(9), 2159–2167 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(10), 1957–1964 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Feng, Y., Yu, X., Han, F.: On nonsingular terminal sliding-mode control of nonlinear systems. Automatica 49(6), 1715–1722 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Feng, Y., Han, F., Yu, X.: Chattering free full-order sliding-mode control. Automatica 50(4), 1310–1314 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Li, S., Zhou, M., Yu, X.: Design and implementation of terminal sliding mode control method for PMSM speed regulation system. IEEE Trans. Ind. Informat. 9(4), 1879–1891 (2013)

    Google Scholar 

  34. Yang, J., Li, S., Su, J., Yu, X.: Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49(7), 2287–2291 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Tao, C.W., Taur, J.S., Chan, M.L.: Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties. IEEE Trans. Syst. Man Cybern. B Cybern 34(1), 255–262 (2004)

    Google Scholar 

  36. Nekoukar, V., Erfanian, A.: Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems. Fuzzy Set. Syst. 179(1), 34–49 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Yang, Y., Tan, J., Yue, D.: Prescribed performance tracking control of a class of uncertain pure-feedback nonlinear systems with input saturation. IEEE Trans. Syst. Man Cybern. Syst. 50(5), 1733–1745 (2020)

    Google Scholar 

  38. Sun, L., Zheng, Z.: Disturbance observer-based robust backstepping attitude stabilization of spacecraft under input saturation and measurement uncertainty. IEEE Trans. Ind. Electron. 64(10), 7994–8002 (2017)

    Google Scholar 

  39. Liang, K., Lin, X., Chen, Y., Li, J., Ding, F.: Adaptive sliding mode output feedback control for dynamic positioning ships with input saturation. Ocean Eng. 206, 107245 (2020)

    Google Scholar 

  40. He, W., Sun, Y., Yan, Z., Yang, C., Li, Z., Kaynak, O.: Disturbance observer-based neural network control of cooperative multiple manipulators with input saturation. IEEE Trans. Neural Netw. Learn. Syst. 31(5), 1735–1746 (2020)

    MathSciNet  Google Scholar 

  41. Zhou, Q., Li, H., Wu, C., Wang, L., Ahn, C.K.: Adaptive fuzzy control of nonlinear systems with unmodeled dynamics and input saturation using small-gain approach. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 1979–1989 (2017)

    Google Scholar 

  42. Gao, Y.F., Sun, X.M., Wen, C., Wang, W.: Adaptive tracking control for a class of stochastic uncertain nonlinear systems with input saturation. IEEE Trans. Autom. Control 62(5), 2498–2504 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Driankov, D., Hellendoorn, H., Reinfrank, M.: An Introduction to Fuzzy Control. Springer-Verlag, New York (1993)

    MATH  Google Scholar 

  44. Cirstea, M.N., Dinu, A., Khor, J.G., McCormick, M.: Neural and Fuzzy Logic Control of Drives and Power Systems. Newnes, Oxford (2002)

    Google Scholar 

  45. Slotine, J.J., Sastry, S.: Tracking control of nonlinear systems using sliding surfaces with application to robot manipulator. Int. J. Control 38(2), 465–492 (1983)

    MathSciNet  MATH  Google Scholar 

  46. Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  47. Ding, S., Zheng, W.X.: Nonsingular terminal sliding mode control of nonlinear second-order systems with input saturation. Int. J. Robust Nonlinear Control 26(9), 1857–1872 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Davila, J., Fridman, L., Levant, A.: Second-order sliding-mode observer for mechanical systems. IEEE Trans. Autom. Control 50(11), 1785–1789 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (61973142), the Jiangsu Natural Science Foundation for Distinguished Young Scholars (BK20180045), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Six Talent Peaks Project in Jiangsu Province (XNYQC-006), the China Scholarship Council (No. 201908320317) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_1612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihong Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, K., Ding, S. & Chen, X. Fuzzy Non-singular Terminal Sliding Mode Controller Design for Nonlinear Systems with Input Saturation. Int. J. Fuzzy Syst. 22, 2271–2283 (2020). https://doi.org/10.1007/s40815-020-00915-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00915-9

Keywords

Navigation