Skip to main content
Log in

A Clustering Algorithm for Triangular Fuzzy Normal Random Variables

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In view of the fact that most clustering algorithms cannot solve the clustering problem about samples with uncertain information, according to the theory of fuzzy sets and probability, we define the fuzzy-probability binary measure space and triangular fuzzy normal random variables firstly, and then combine the advantages of k-means algorithm, such as simple principle, few parameters, fast convergence rate, good clustering effect and good scalability, etc., a clustering algorithm is proposed for samples containing multiple triangular fuzzy normal random variables, which we call TFNRV-k-means algorithm. The algorithm uses our proposed Euclidean random comprehensive absolute distance (ERCAD for short) as a measurement, under the fuzzy measure, the lower bound, the principal value and the upper bound of the triangular fuzzy normal random variables are iterated, respectively, by means, and then the cluster center is updated until it becomes stable and unchanged. Then we analyze the time complexity of the proposed algorithm, and test the algorithm under different sample sets by random simulation experiments. We get the highest clustering accuracy of 99.00% and the maximum Kappa coefficient of 0.9850, and draw the conclusion that TFNRV-k-means clustering algorithm has good clustering effect. Finally, we summarize the content of the article, list the advantages and disadvantages of TFNRV-k-means clustering algorithm, and propose corresponding improvement methods, which provide ideas for further research on TFNRV-k-means in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Han, Jiawei, Kamber, Micheline, Pei, Jian: Data Mining: Concept and Technique, 3rd edn. China Machine Press, Beijing (2012)

    MATH  Google Scholar 

  2. Everitt, B.S., Landau, S., Leese, M., et al.: Cluster Analysis, 5th edn. Wiley, London (2011)

    Book  Google Scholar 

  3. Sun, J.G., Liu, J., Zhao, L.Y.: Clustering algorithms research. J. Softw. 01, 48–61 (2008)

    Article  Google Scholar 

  4. Jain, A., Mutry, M., Flynn, P.: Data clustering. ACM Comput. Surv. 31(03), 48–61 (1999)

    Article  Google Scholar 

  5. Sambasivam, S., Theodosopoulos, N.: Advanced data clustering methods of mining web documents. Issues Inform. Sci. Inf. Technol. 12(03), 563–579 (2006)

    Article  Google Scholar 

  6. Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(01), 4–37 (2000)

    Article  Google Scholar 

  7. MacQueen J.B. Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, America, California, University of California Press, pp. 281–297 (1967)

  8. Chen, Z.S., Chin, K.S., Li, Y.L.: A framework for triangular fuzzy random multiple-criteria decision making. Int. J. Fuzzy Syst. 18(02), 227–247 (2016)

    Article  MathSciNet  Google Scholar 

  9. Zhao, Y.P., Chen, L., Chen, C.L.P.: Fuzzy clustering in cascaded feature space. Int. J. Fuzzy Syst. 21(07), 2155–2167 (2019)

    Article  Google Scholar 

  10. Azimpour, P., Shad, R., Ghaemi, M.: Hyperspectral image clustering with albedo recovery fuzzy c-means. Int. J. Remote Sens. 41(16), 6117–6134 (2020)

    Article  Google Scholar 

  11. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(03), 338–353 (1965)

    Article  Google Scholar 

  12. Deng, J.L.: The grey control system. J. Huazhong Inst. Technol. 03, 9–18 (1982)

    Google Scholar 

  13. Pawlak, Z.: Rough sets. Inf. J. Inf. Comput. Sci. 11, 341–356 (1982)

    Article  Google Scholar 

  14. Liu, S.F., Yang, Y.J., Wu, L.F., et al.: Grey system and its application, 7th edn. Science Press, Beijing (2014)

    Google Scholar 

  15. Zhao, R.: Clustering with kernel k-means and diffusion distance [D]. Department of Mathematical Sciences, Tsinghua University, Beijing (2011)

    Google Scholar 

  16. Bezdek, J.C.: Convergence theorem for the fuzzy ISODATA clustering algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 2(01), 1–8 (1980)

    Article  Google Scholar 

  17. Arthur D, Vassilvitskii S. k-means++: the advantages of careful seeding. In: Proceedings of Eighteenth ACM-Siam Symposium on Discrete Algorithms, pp. 1027–1035. ACM Press, New Orleans (2007)

  18. Sarma, T.H., Viswanath, P., Negi A:. Speeding-up the prototype based kernel k-means clustering method for large data sets. In: Proceedings of 2016 IEEE international joint conference on neural networks, pp. 1903–1910. IEEE Press, Vancouver (2016)

  19. Bai, L., Liang, J.Y., Guo, Y.K.: An ensemble clusterer of multiple fuzzy k-means clusterings to recognize arbitrarily shaped clusters. IEEE Trans. Fuzzy Syst. 26(06), 3524–3533 (2018)

    Google Scholar 

  20. Burrough, P.A., van Gaans, P.F.M., MacMillan, R.A.: High-resolution landform classification using fuzzy k-means. Fuzzy Sets Syst. 113, 37–52 (2000)

    Article  Google Scholar 

  21. Lingras, P., West, C.: Interval set clustering of web users with rough k-means. J. Intell. Inf. Syst. 23(01), 5–16 (2004)

    Article  Google Scholar 

  22. Li, M.J., Ng, M.K., Cheung, Y.M., et al.: Agglomerative fuzzy k-means clustering algorithm with selection of number of clusters. IEEE Trans. Knowl. Data Eng. 20(11), 1519–1534 (2008)

    Article  Google Scholar 

  23. Peters, G., Grespo, F., Lingras, P., et al.: Soft clustering-fuzzy and rough approaches and their extensions and derivatives. Int. J. Approx. Reason. 54(02), 307–322 (2013)

    Article  MathSciNet  Google Scholar 

  24. Chen, S.L., Li, J.G., Wang, X.G.: The theory of fuzzy sets and its application, 1st edn. Science Press, Beijing (2005)

    Google Scholar 

  25. Luo, C.Z.: Introduction to fuzzy sets (last volume). Beijing Normal University Press, Beijing (2007)

    Google Scholar 

  26. Li, D.F.: Fuzzy mulobjective many-person decision making and games. National Defense Industry Press, Beijing (2003)

    Google Scholar 

  27. Wang, F.S., Xu, D., Wu, W.X.: A cluster algorithm of automatic key frame extraction based on adaptive threshold. J. Comput. Res. Dev. 42(10), 1752–1757 (2005)

    Article  Google Scholar 

  28. Al-Shammary, D., Khalil, I., Tari, Z., et al.: Fractal self-similarity measurements based clustering technique for SOAP Web message. J. Parallel Distrib. Comput. 73(05), 664–676 (2013)

    Article  Google Scholar 

  29. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(01), 37–46 (1960)

    Article  Google Scholar 

  30. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33(01), 159–174 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyan Chen.

Appendix

Appendix

See Tables 5, 6, 7, 8, 9, 10, 11, 12, 13.

Table 5 Experimental condition for the first set of random simulation
Table 6 Experimental condition for the second set of random simulation
Table 7 Experimental condition for the third set of random simulation
Table 8 Experimental condition for the fourth set of random simulation
Table 9 Experimental condition for the fifth set of random simulation
Table 10 Experimental condition for the sixth set of random simulation
Table 11 Experimental condition for the seventh set of random simulation
Table 12 Experimental condition for the eighth set of random simulation
Table 13 Experimental condition for the ninth set of random simulation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, Y. & Li, Q. A Clustering Algorithm for Triangular Fuzzy Normal Random Variables. Int. J. Fuzzy Syst. 22, 2083–2100 (2020). https://doi.org/10.1007/s40815-020-00933-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00933-7

Keywords

Navigation