Skip to main content

Advertisement

Log in

A Multitasking Genetic Algorithm for Mamdani Fuzzy System with Fully Overlapping Triangle Membership Functions

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Evolutionary multitasking is an emerging subject in the field of evolutionary computation. By adopting methods to effectively discover and implicitly transfer useful genetic materials from one task to another, it can process multiple optimization tasks simultaneously using one evolutionary calculation. Inspired by the idea of evolutionary multitasking, it can be also used in optimization problems of fuzzy systems (FSs). By exchanging optimization experience and knowledge between different FSs, it is expected to enhance the speed and efficiency of FS optimization and be applied to FS optimization tasks with higher requirement for running time and accuracy of results. Moreover, using the experience and knowledge of simple FSs optimization tasks to facilitate the optimization of complex FSs, it can resolve high time consuming and high cost that triggered by large, complex FSs optimization problems and improve the feasibility of its application in large complex fuzzy control optimization problems. Different from the general multi-task learning, the multi-task learning of FS optimization has its own features. Consequently, based on the thought of evolutionary multitasking and the traits of multi-task learning of FS optimization, a general framework of multitasking genetic fuzzy system (MTGFS) is proposed to effectively solve the multi-task optimization problems of fuzzy systems. A multitasking evolutionary optimization algorithm for Mamdani fuzzy systems with fully overlapping triangle membership functions (FOTMF-M-MTGFS) is also designed and implemented. Comparative studies with genetic fuzzy system (GFS), a single-task optimization algorithm of FSs, indicate that the evolution speed and result of the MTGFS are superior than GFS on average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Herrera, F.: Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol. Intel. 1(1), 27–46 (2008)

    Article  Google Scholar 

  2. Khan, A.A., Abolhasan, M., Ni, W., Lipman, J., Jamalipour, A.: A Hybrid-Fuzzy Logic Guided Genetic Algorithm (H-FLGA) approach for resource optimization in 5G VANETs. IEEE Trans. Veh. Technol. 68(7), 6964–6974 (2019)

    Article  Google Scholar 

  3. Ahmed, Mokeddem, S.: A fuzzy classification model for myocardial infarction risk assessment. Appl. Intell. 48(5), 1233–1250 (2018)

    Google Scholar 

  4. Hosseini, R., Qanadli, S.D., Barman, S., Mazinani, M., Ellis, T., Dehmeshki, J.: An automatic approach for learning and tuning gaussian interval type-2 fuzzy membership functions applied to lung CAD classification system. IEEE Trans. Fuzzy Syst. 20(2), 224–234 (2012)

    Article  Google Scholar 

  5. Eckert, J.J., Santiciolli, F.M., Yamashita, R.Y., Corrêa, F.C., Silva, L.C.A., Dedini, F.G.: Fuzzy gear shifting control optimization to improve vehicle performance, fuel consumption and engine emissions. IET Control Theory Appl. 13(16), 2658–2669 (2019)

    Article  Google Scholar 

  6. Elhag, S., Fernández, A., Altalhi, A., Alshomrani, S., Herrera, F.: A multi-objective evolutionary fuzzy system to obtain a broad and accurate set of solutions in intrusion detection systems. Soft. Comput. (2017). https://doi.org/10.1007/s00500-017-2856-4

    Article  Google Scholar 

  7. Awrejcewicz, J., Lewandowski, D., Olejnik, P.: Dynamics of Mechatronics Systems: Modeling, Simulation, Control, Optimization and Experimental Investigations, p. 276. World Scientific, Singapore (2016)

    Book  Google Scholar 

  8. Butakova, M.A., Chernov, A.V., Shevchuk, P.S., Vereskun, V.D.: Neural fuzzy adaptive control for mobile smart objects. In: Proceedings of the international symposium on consumer technologies (ISCT) conf., 2018, St. Petersburg, pp. 45–48

  9. Zubova, N.V., Achitaev, A.A.: Application of neuro-fuzzy control systems for increasing the energy efficiency of wind turbines. In: Proceedings of the XIV international scientific-technical conference on actual problems of electronics instrument engineering (APEIE). Novosibirsk. pp. 518–521 (2018)

  10. Rivera, J., Rodriguez, K., Yu, X.: Cardiovascular conditions classification using adaptive neuro-fuzzy inference system. In: Proceedings of the IEEE international conference on fuzzy systems (FUZZ-IEEE), New Orleans, LA, USA. pp. 1–6 (2019)

  11. Wu, B., Huang, J., Gao, W.: Rule reduction in air combat belief rule base based on fuzzy-rough set. In: Proceedings of the international conference on information science & control engineering. IEEE (2016)

  12. Ren, Y., Li, Q., Ding, D., Xie, X.: Dissipativity-preserving model reduction for takagi-sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 27(4), 659–670 (2019)

    Article  Google Scholar 

  13. Lu, X., Bai, Y.: A new rule reduction method for fuzzy modeling. IEEE Trans. Fuzzy Syst. 1(99), 1 (2019)

    Google Scholar 

  14. Buzikayeva, A.V., Susdorf, V.I., Cherniy, S.P.: Modeling multi-cascade fuzzy controller with integrated implementation of various control laws. In: Proceedings of the 2019 international ural conference on electrical power engineering (UralCon), Chelyabinsk, Russia. pp. 45–48 (2019)

  15. Wijayanto, B., Wibowo, A.: Automated guided vehicle simulation software development using parallel cascade fuzzy method for reaching a target. In: Proceedings of the 2nd international conference on informatics and computational sciences (ICICoS) (2018)

  16. Omara, A.M., Sleptsov, M., Diab, A.A.Z.: Cascaded fuzzy logic based direct torque control of interior permanent magnet synchronous motor for variable speed electric drive systems. In: Proceedings 25th international workshop on electric drives: optimization in control of electric drives (IWED) (2018)

  17. Gupta, A., Ong, Y.S., Feng, L.: Multifactorial evolution: toward evolutionary multitasking. IEEE Trans. Evol. Comput. 20(3), 343–357 (2016)

    Article  Google Scholar 

  18. Ong, Y.S., Gupta, A.: Evolutionary multitasking: a computer science view of cognitive multitasking. Cogn. Comput. 8(2), 125–142 (2016)

    Article  Google Scholar 

  19. Gupta, A., Ong, Y.-S., Feng, L., Tan, K.C.: Multi-objective multifactorial optimization in evolutionary multitasking. IEEE Trans. Cybern. 47(7), 1652–1665 (2017). https://doi.org/10.1109/TCYB.2016.2554622

    Article  Google Scholar 

  20. Zhou, L., Feng, L., Zhong, J., Ong, Y., Zhu, Z., Sha, E.: Evolutionary multitasking in combinatorial search spaces: a case study in capacitated vehicle routing problem. In: Proceedings of the IEEE symposium series computational intelligence (SSCI), Athens, Greece. pp. 1–8 (2016)

  21. Yuan, Y., Ong, Y.S., Gupta, A., Tan, P.S., Xu, H.: Evolutionary multitasking in permutation-based combinatorial optimization problems: realization with TSP, QAP, LOP, and JSP. In: Proceedings of the IEEE region 10 conference (TENCON). pp. 3157–3164 (2016)

  22. Gupta, A., Mañdziuk, J., Ong, Y.-S.: Evolutionary multitasking in bi-level optimization. Complex Intell. Syst. 1(1–4), 83–95 (2015)

    Article  Google Scholar 

  23. Sagarna, R., Ong, Y.S.: Concurrently searching branches in software tests generation through multitask evolution. In: Proceedings of the IEEE symposium series on computational intelligence. pp. 1–8 (2016)

  24. Tang, Z., Gong. M., Zhang, M.: Evolutionary multi-task learning for modular extremal learning machine. In: Proceedings of the IEEE international conference on 12 evolutionary computation, san sebastian, Spain. pp. 474–479 (2017)

  25. Ding, J., Yang, C., Jin, Y., Chai, T.: Generalized multi-tasking for evolutionary optimization of expensive problems. IEEE Trans. Evol. Comput. (2018). https://doi.org/10.1109/TEVC.2017.2785351

    Article  Google Scholar 

  26. Wu, D., Tan, X.: Multi-tasking genetic algorithm (MTGA) for fuzzy system optimization. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2020.2968863

    Article  Google Scholar 

  27. Wen, Y.W., Ting, C.K.: Parting ways and reallocating resources in evolutionary multitasking. In: Proceedings of the IEEE international conference on evolutionary computation, San Sebastian, Spain. pp. 2404–2411 (2017)

  28. Zadeh, L.A.: Fuzzy Sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  29. Wang, A., Liu, L., Qiu, J., Feng, G.: Event-triggered robust adaptive fuzzy control for a class of nonlinear systems. IEEE Trans. Fuzzy Syst. 27(8), 1648–1658 (2019)

    Article  Google Scholar 

  30. Yi, H., Zhang, Q.: An optimal fuzzy control method for nonlinear time-delayed batch processes. IEEE Access. 8, 42608–42618 (2020)

    Article  Google Scholar 

  31. Sakthivel, R., Selvaraj, P., Kaviarasan, B.: Modified repetitive control design for nonlinear systems with time delay based on T-S Fuzzy Model. IEEE Trans. Syst. Man Cybern. Syst. 50(2), 646–655 (2020)

    Article  Google Scholar 

  32. Qu, Z., Zhang, Z., Du, Z.: New results of fuzzy sampled-data control for nonlinear time-delay systems. IEEE Access 8, 32376–32384 (2020). https://doi.org/10.1109/ACCESS.2020.2972933

    Article  Google Scholar 

  33. Du, Z., Kao, Y., Karimi, H.R., Zhao, X.: Interval type-2 fuzzy sampled-data H∞ control for nonlinear unreliable networked control systems. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/tfuzz.2019.2911490

    Article  Google Scholar 

  34. Du, Z., Yan, Z., Zhao, Z.: Interval type-2 fuzzy tracking control for nonlinear systems via sampled-data controller. Fuzzy Sets Syst. 356, 92–112 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Silvana, M., Akbar, R., Derisma, Audina, M., Firdaus: Development of classification features of mental disorder characteristics using the fuzzy logic Mamdani method. In: Proceedings of the international conference on information technology systems and innovation, Bandung—Padang, Indonesia. pp. 410–414 (2018)

  36. Nguyen, T., Hettiarachchi, I., Khatami, A., Gordon-Brown, L., Lim, C.P., Nahavandi, S.: Classification of multi-class BCI data by common spatial pattern and fuzzy system. IEEE Access. 6(8), 27873–27884 (2018)

    Article  Google Scholar 

  37. Anter, A.M., Huang, G., Li, L., Zhang, L., Liang, Z., Zhang, Z.: A new type of fuzzy rule-based system with chaotic swarm intelligence for multi-classification of pain perception from fMRI. IEEE Trans. Fuzzy Syst. 28, 1096–1109 (2020)

    Article  Google Scholar 

  38. Asimuzzaman, M., Nath, P.D., Hossain, F., Hossain, A., Rahman, R.M.: Sentiment analysis of Bangla microblogs using adaptive neuro fuzzy system. In: Proceedings of the international conference on natural computation, fuzzy systems and knowledge discovery, Guilin. pp. 1631–1638 (2017)

  39. Mi, Y., Shi, Y., Li, J., Liu, W., Yan, M.: Fuzzy-based concept learning method: exploiting data with fuzzy conceptual clustering. IEEE Trans. Cybern. (2020)

  40. Du, Z., Kao, Y., Zhao, X.: An input delay approach to interval type-2 fuzzy exponential stabilization for nonlinear unreliable networked sampled-data control systems. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/tsmc.2019.2930473

    Article  Google Scholar 

  41. Magdi, S.M., Manar, M.S., Salah, G.F.: A new approach to fuzzy control of interconnected systems. Syst. Anal. Modell. Simul. 42(11), 1623–1637 (2002). https://doi.org/10.1080/716067175

    Article  MathSciNet  MATH  Google Scholar 

  42. Wu, D., Lin, C., Huang, J., Zeng, Z.: On the functional equivalence of TSK fuzzy systems to neural networks, mixture of experts, CART, and stacking ensemble regression. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2941697

    Article  Google Scholar 

  43. Da, B., Ong, Y., Feng. L., Qin, A.K., Gupta, A., Zhu. Z., Ting, C., Tang. K., Yao, X.: Evolutionary multitasking for single-objective continuous optimization: benchmark problems, performance metric, and baseline results. CoRR. abs/1706.03470 (2017) http://arxiv.org/abs/1706.03470

Download references

Funding

The work was supported in part by the National Natural Science Foundation of China under Grant 61806221.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Ning Hao or Xiao-Han Yu.

Ethics declarations

Conflicts of Interest

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Hao, WN., Yu, XH. et al. A Multitasking Genetic Algorithm for Mamdani Fuzzy System with Fully Overlapping Triangle Membership Functions. Int. J. Fuzzy Syst. 22, 2449–2465 (2020). https://doi.org/10.1007/s40815-020-00954-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00954-2

Keywords

Navigation