Skip to main content
Log in

Pythagorean Fuzzy TODIM Method Based on the Cumulative Prospect Theory for MAGDM and Its Application on Risk Assessment of Science and Technology Projects

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The risk assessment of science and technology projects could be regarded as a classical multiple attribute group decision-making (MAGDM) issue. The Pythagorean fuzzy sets (PFSs) can fully describe the uncertain information for the risk assessment of science and technology projects. Furthermore, the classical TODIM method based on the cumulative prospect theory (CPT-TODIM) is built, which is a selectable method in reflecting the DMs’ psychological behavior. Thus, in this paper, the Pythagorean fuzzy CPT-TODIM (PF-CPT-TODIM) method is proposed for MAGDM issue. At the same time, it is enhancing rationality to get the weight information of attributes by using the entropy weight method under PFSs. And focusing on hot issues in contemporary society, this article applies the discussed method to risk assessment of science and technology projects, and demonstrates risk assessment model of science and technology projects based on the proposed method. Finally, through comparing the outcome of comparative analysis, we conclude that this improved approach is acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    MATH  Google Scholar 

  2. Cavallaro, F., Zavadskas, E.K., Streimikiene, D., Mardani, A.: Assessment of concentrated solar power (CSP) technologies based on a modified intuitionistic fuzzy topsis and trigonometric entropy weights. Technol. Forecast. Soc. Chang. 140, 258–270 (2019)

    Google Scholar 

  3. Chakraborty, S., Zavadskas, E.K.: Applications of WASPAS method in manufacturing decision making. Informatica 25(1), 1–20 (2014)

    Google Scholar 

  4. Chakraborty, S., Zavadskas, E.K., Antucheviciene, J.: Applications of waspas method as a multi-criteria decision-making tool. Econ. Comput. Econ. Cybern. Stud. Res. 49(1), 5–22 (2015)

    Google Scholar 

  5. Chen, T.Y.: An effective correlation-based compromise approach for multiple criteria decision analysis with Pythagorean fuzzy information. J. Intell. Fuzzy Syst. 35(3), 3529–3541 (2018)

    Google Scholar 

  6. Chen, T.Y.: A mixed-choice-strategy-based consensus ranking method for multiple criteria decision analysis involving pythagorean fuzzy information. IEEE Access 6, 79174–79199 (2018)

    Google Scholar 

  7. Chen, T.Y.: A novel PROMETHEE-based outranking approach for multiple criteria decision analysis with pythagorean fuzzy information. IEEE Access 6, 54495–54506 (2018)

    Google Scholar 

  8. Chen, T.Y.: Remoteness index-based Pythagorean fuzzy VIKOR methods with a generalized distance measure for multiple criteria decision analysis. Inform. Fusion 41, 129–150 (2018)

    Google Scholar 

  9. Chen, W., Ma, F., Wei, Y., Liu, J.: Forecasting oil price volatility using high-frequency data: new evidence. Int. Rev. Econ. Finance 66, 1–12 (2020)

    Google Scholar 

  10. Deng, X.M., Gao, H.: TODIM method for multiple attribute decision making with 2-tuple linguistic pythagorean fuzzy information. J. Intell. Fuzzy Syst. 37(2), 1769–1780 (2019)

    Google Scholar 

  11. Diakoulaki, D., Mavrotas, G., Papayannakis, L.: Determining objective weights in multiple criteria problems: the CRITIC method. Comput. OR 22, 763–770 (1995)

    MATH  Google Scholar 

  12. Fei, L.G., Deng, Y.: Multi-criteria decision making in Pythagorean fuzzy environment. Appl. Intell. 50(2), 537–561 (2020)

    Google Scholar 

  13. Gao, H., Ran, L.G., Wei, G.W., Wei, C., Wu, J.: VIKOR method for MAGDM based on q-rung interval-valued orthopair fuzzy information and its application to supplier selection of medical consumption products. Int. J. Environ. Res. Public Health 17(2), 525 (2020)

    Google Scholar 

  14. Garg, H.: Generalized intuitionistic fuzzy entropy-based approach for solving multi-attribute decision-making problems with unknown attribute weights. Proc. Natl. Acad. Sci. India Sect. Phys. Sci. 89(1), 129–139 (2019)

    MathSciNet  Google Scholar 

  15. Garg, H.: New logarithmic operational laws and their aggregation operators for Pythagorean fuzzy set and their applications. Int. J. Intell. Syst. 34(1), 82–106 (2019)

    Google Scholar 

  16. Gomes, L.F.A.M., Lima, M.M.P.P.: TODIM: basic and application to multicriteria ranking of projects with environmental impacts. Found. Comput. Decis. Sci. 16(4), 113–127 (1991)

    MATH  Google Scholar 

  17. Gou, X.J., Xu, Z.S., Ren, P.J.: The properties of continuous pythagorean fuzzy information. Int. J. Intell. Syst. 31(5), 401–424 (2016)

    Google Scholar 

  18. Gul, M., Ak, M.F., Guneri, A.F.: Pythagorean fuzzy VIKOR-based approach for safety risk assessment in mine industry. J. Saf. Res. 69, 135–153 (2019)

    Google Scholar 

  19. Hadjitodorov, S.T.: An intuitionistic fuzzy version of the nearest prototype classification method, based on a moving-of-pattern procedure. Int. J. Gen Syst 30(2), 155–165 (2001)

    MathSciNet  MATH  Google Scholar 

  20. Huang, Y.B., Jiang, W.: Extension of TOPSIS Method and its Application in Investment. Arab. J. Sci. Eng. 43(2), 693–705 (2018)

    Google Scholar 

  21. Hung, W.L., Yang, M.S.: Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance. Pattern Recogn. Lett. 25(14), 1603–1611 (2004)

    Google Scholar 

  22. Ji, X.N., Yu, L.X., Fu, J.P.: Evaluating personal default risk in P2P lending platform: based on dual hesitant pythagorean fuzzy TODIM approach. Mathematics 8(1), 8 (2020)

    Google Scholar 

  23. Kumar, A., Samuel, O., Li, X., Abdel-Basset, M., Wang, H.: Towards an efficient risk assessment in software projects–fuzzy reinforcement paradigm. Comput. Electr. Eng. 71, 833–846 (2018)

    Google Scholar 

  24. Lei, F., Wei, G.W., Gao, H., Wu, J., Wei, C.: TOPSIS method for developing supplier selection with probabilistic linguistic information. Int. J. Fuzzy Syst. 22(3), 749–759 (2020)

    Google Scholar 

  25. Li, D.F., Jiang, B.H., Suo, H.S., Guo, Y.: Overview of smart factory studies in petrochemical industry. In: Gernaey, K.V., Huusom, J.K., Gani, R. (eds.) 12th International Symposium on Process Systems Engineering, pp. 71–76 (2015)

  26. Li, D.F., Ren, H.P.: Multi-attribute decision making method considering the amount and reliability of intuitionistic fuzzy information. J. Intell. Fuzzy Syst. 28(4), 1877–1883 (2015)

    MathSciNet  Google Scholar 

  27. Li, N., Garg, H., Wang, L.: Some novel interactive hybrid weighted aggregation operators with pythagorean fuzzy numbers and their applications to decision making. Mathematics 7(12), 1150 (2019)

    Google Scholar 

  28. Li, Z.X., Lu, M.: Some novel similarity and distance and measures of Pythagorean fuzzy sets and their applications. J. Intell. Fuzzy Syst. 37(2), 1781–1799 (2019)

    Google Scholar 

  29. Li, Z.X., Wei, G.W., Wang, R., Wu, J., Wei, C., Wei, Y.: EDAS method for multiple attribute group decision making under q-rung orthopair fuzzy environment. Technol. Econ. Dev. Econ. 26(1), 86–102 (2020)

    Google Scholar 

  30. Liang, D.C., Xu, Z.S., Darko, A.P.: Projection model for fusing the information of pythagorean fuzzy multicriteria group decision making based on geometric Bonferroni mean. Int. J. Intell. Syst. 32(9), 966–987 (2017)

    Google Scholar 

  31. Liang, D.C., Zhang, Y.R.J., Xu, Z.S., Jamaldeen, A.: Pythagorean fuzzy VIKOR approaches based on TODIM for evaluating internet banking website quality of Ghanaian banking industry. Appl. Soft Comput. 78, 583–594 (2019)

    Google Scholar 

  32. Lin, Y.L., Ho, L.H., Yeh, S.L., Chen, T.Y.: A pythagorean fuzzy TOPSIS method based on novel correlation measures and its application to multiple criteria decision analysis of inpatient stroke rehabilitation. Int. J. Comput. Intell. Syst. 12(1), 410–425 (2019)

    Google Scholar 

  33. Liu, H.C., Wang, L.E., Li, Z.W., Hu, Y.P.: Improving risk evaluation in FMEA with cloud model and hierarchical TOPSIS method. IEEE Trans. Fuzzy Syst. 27(1), 84–95 (2019)

    Google Scholar 

  34. Liu, H.C., You, J.X., Duan, C.Y.: An integrated approach for failure mode and effect analysis under interval-valued intuitionistic fuzzy environment. Int. J. Prod. Econ. 207, 163–172 (2019)

    Google Scholar 

  35. Liu, P.D., Khan, Q., Mahmood, T., Smarandache, F., Li, Y.: Multiple attribute group decision making based on 2-tuple linguistic neutrosophic dombi power heronian mean operators. IEEE Access 7, 100205–100230 (2019)

    Google Scholar 

  36. Liu, P.D., Liu, X.X.: Linguistic intuitionistic fuzzy Hamy mean operators and their application to multiple-attribute group decision making. IEEE Access 7, 127728–127744 (2019)

    Google Scholar 

  37. Liu, P.D., Wang, P.: Multiple-attribute decision-making based on archimedean Bonferroni operators of q-Rung orthopair fuzzy numbers. IEEE Trans. Fuzzy Syst. 27(5), 834–848 (2019)

    Google Scholar 

  38. Liu, Z.M., Xu, H.X., Zhao, X.L., Liu, P.D., Li, J.Q.: Multi-attribute group decision making based on intuitionistic uncertain linguistic Hamy mean operators with linguistic scale functions and its application to health-care waste treatment technology selection. IEEE Access 7, 20–46 (2019)

    Google Scholar 

  39. Lu, J.P., He, T.T., Wei, G.W., Wu, J., Wei, C.: Cumulative prospect theory: performance evaluation of government purchases of home-based elderly-care services using the pythagorean 2-tuple linguistic TODIM method. Int. J. Environ. Res. Public Health 17(6), 1939 (2020)

    Google Scholar 

  40. Lu, J.P., Wei, C.: TODIM method for performance appraisal on social-integration-based rural reconstruction with interval-valued intuitionistic fuzzy information. J. Intell. Fuzzy Syst. 37(2), 1731–1740 (2019)

    Google Scholar 

  41. Peng, X.D., Garg, H.: Multiparametric similarity measures on Pythagorean fuzzy sets with applications to pattern recognition. Appl. Intell. 49(12), 4058–4096 (2019)

    Google Scholar 

  42. Peng, X.D., Yang, Y.: Some results for Pythagorean fuzzy sets. Int. J. Intell. Syst. 30(11), 1133–1160 (2015)

    MathSciNet  Google Scholar 

  43. Peng, X.D., Yang, Y.: Pythagorean fuzzy choquet integral based MABAC method for multiple attribute group decision making. Int. J. Intell. Syst. 31(10), 989–1020 (2016)

    Google Scholar 

  44. Peng, X.D., Zhang, X., Luo, Z.G.: Pythagorean fuzzy MCDM method based on CoCoSo and CRITIC with score function for 5G industry evaluation. Artif. Intell. Rev. 1–35 (2019)

  45. Peng, X.D., Zhang, X., Luo, Z.G.: Pythagorean fuzzy MCDM method based on CoCoSo and CRITIC with score function for 5G industry evaluation. Artif. Intell. Rev. (2019). https://doi.org/10.1007/s10462-10019-09780-x

    Article  Google Scholar 

  46. Rani, P., Mishra, A.R., Pardasani, K.R., Mardani, A., Liao, H.C., Streimikiene, D.: A novel VIKOR approach based on entropy and divergence measures of Pythagorean fuzzy sets to evaluate renewable energy technologies in India. J. Clean Prod. 238, 117936 (2019)

    Google Scholar 

  47. Ranjbar, H.R., Nekooie, M.A.: An improved hierarchical fuzzy TOPSIS approach to identify endangered earthquake-induced buildings. Eng. Appl. Artif. Intell. 76, 21–39 (2018)

    Google Scholar 

  48. Ren, P.J., Xu, Z.S., Gou, X.J.: Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 42, 246–259 (2016)

    Google Scholar 

  49. Stanujkic, D., Karabasevic, D., Zavadskas, E.K., Smarandache, F., Cavallaro, F.: An approach to determining customer satisfaction in traditional serbian restaurants. Entrepreneurship Sustain. Issues 6(3), 1127–1138 (2019)

    Google Scholar 

  50. Suresh, K., Dillibabu, R.: A novel fuzzy mechanism for risk assessment in software projects. Soft. Comput. 24(3), 1683–1705 (2020)

    Google Scholar 

  51. Tang, A.-G., Wang, R.-l.: Software Project Risk Assessment Model Based on Fuzzy Theory (2010)

  52. Teng, F., Liu, Z.M., Liu, P.D.: Some power Maclaurin symmetric mean aggregation operators based on Pythagorean fuzzy linguistic numbers and their application to group decision making. Int. J. Intell. Syst. 33(9), 1949–1985 (2018)

    Google Scholar 

  53. Thao, N.X., Smarandache, F.: A new fuzzy entropy on Pythagorean fuzzy sets. J. Intell. Fuzzy Syst. 37(1), 1065–1074 (2019)

    Google Scholar 

  54. Tian, X.L., Xu, Z.S., Gu, J.: An extended TODIM based on cumulative prospect theory and its application in venture capital. Informatica 30(2), 413–429 (2019)

    MathSciNet  Google Scholar 

  55. Tuysuz, F., Kahraman, C.: Project risk evaluation using a fuzzy analytic hierarchy process: an application to information technology projects. Int. J. Intell. Syst. 21(6), 559–584 (2006)

    MATH  Google Scholar 

  56. Tversky, Kahneman: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertainty 5, 297–323 (1992)

    MATH  Google Scholar 

  57. Wan, S.P., Li, D.F.: Atanassov’s intuitionistic fuzzy programming method for heterogeneous multiattribute group decision making with Atanassov’s intuitionistic fuzzy truth degrees. IEEE Trans. Fuzzy Syst. 22(2), 300–312 (2014)

    MathSciNet  Google Scholar 

  58. Wang, P., Wang, J., Wei, G.W., Wu, J., Wei, C., Wei, Y.: CODAS method for multiple attribute group decision making under 2-tuple linguistic neutrosophic environment. Informatica 31(1), 161–184 (2020)

    Google Scholar 

  59. Wei, G.W.: 2-tuple intuitionistic fuzzy linguistic aggregation operators in multiple attribute decision making. Iran. J. Fuzzy Syst. 16(4), 159–174 (2019)

    MathSciNet  MATH  Google Scholar 

  60. Wei, G.W., Gao, H.: Pythagorean 2-tuple linguistic power aggregation operators in multiple attribute decision making. Econ. Res. EkonomskaIstraživanja 31(1), 904–933 (2020)

    Google Scholar 

  61. Wei, G.W., Lu, M.: Pythagorean fuzzy power aggregation operators in multiple attribute decision making. Int. J. Intell. Syst. 33(1), 169–186 (2018)

    Google Scholar 

  62. Wei, G.W., Wei, C., Wu, J., Wang, H.J.: Supplier selection of medical consumption products with a probabilistic linguistic MABAC method. Int. J. Environ. Res. Public Health 16(24), 5082 (2019)

    Google Scholar 

  63. Wei, Y., Nan, H., Wei, G.: The impact of employee welfare on innovation performance: evidence from China’s manufacturing corporations. Int. J. Prod. Econ. 228, 107753 (2020)

    Google Scholar 

  64. Wei, Y., Yu, Q., Liu, J., Cao, Y.: Hot money and China’s stock market volatility: further evidence using the GARCH–MIDAS model. Physica A 492, 923–930 (2018)

    Google Scholar 

  65. Wu, L.P., Wei, G.W., Wu, J., Wei, C.: Some interval-valued intuitionistic fuzzy Dombi Heronian mean operators and their application for evaluating the ecological value of forest ecological tourism demonstration areas. Int. J. Environ. Res. Public Health 17(3), 829 (2020)

    Google Scholar 

  66. Xu, Z.S., Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 35(4), 417–433 (2006)

    MathSciNet  MATH  Google Scholar 

  67. Yager, R.R.: The power average operator. IEEE Trans. Systems Man Cybern. Part A Syst. Hum. 31(6), 724–731 (2001)

    Google Scholar 

  68. Yager, R.R.: Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 22(4), 958–965 (2014)

    Google Scholar 

  69. Yu, G.F., Fei, W., Li, D.F.: A compromise-typed variable weight decision method for hybrid multiattribute decision making. IEEE Trans. Fuzzy Syst. 27(5), 861–872 (2019)

    Google Scholar 

  70. Yu, G.F., Li, D.F., Qiu, J.M., Ye, Y.F.: Application of satisfactory degree to interval-valued intuitionistic fuzzy multi-attribute decision making. J Intell. Fuzzy Syst. 32(1), 1019–1028 (2017)

    MATH  Google Scholar 

  71. Yu, L.P., Zeng, S.Z., Merigo, J.M., Zhang, C.H.: A new distance measure based on the weighted induced method and its application to Pythagorean fuzzy multiple attribute group decision making. Int. J. Intell. Syst. 34(7), 1440–1454 (2019)

    Google Scholar 

  72. Zadeh, L.A.: Fuzzy sets, In: Information and Control, pp. 338–356 (1965)

  73. Zeb, A., Khan, M.S.A., Ibrar, M.: Approaches to multi-attribute decision making with risk preference under extended Pythagorean fuzzy environment. J. Intell. Fuzzy Syst. 36(1), 325–335 (2019)

    Google Scholar 

  74. Zeng, S.Z., Chen, J.P., Li, X.S.: A hybrid method for Pythagorean fuzzy multiple-criteria decision making. Int. J. Inf. Technol. Decis. Mak. 15(2), 403–422 (2016)

    Google Scholar 

  75. Zeng, S.Z., Peng, X.M., Balezentis, T., Streimikiene, D.: Prioritization of low-carbon suppliers based on Pythagorean fuzzy group decision making with self-confidence level. Econ. Res.-Ekonomska Istrazivanja 32(1), 1073–1087 (2019)

    Google Scholar 

  76. Zhang, S., Wei, G., Alsaadi, F.E., Hayat, T., Wei, C., Zhang, Z.: MABAC method for multiple attribute group decision making under picture 2-tuple linguistic environment. Soft. Comput. 24(8), 5819–5829 (2020)

    Google Scholar 

  77. Zhang, X.L., Xu, Z.S.: Extension of TOPSIS to multiple criteria decision making with pythagorean fuzzy sets. Int. J. Intell. Syst. 29(12), 1061–1078 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiwu Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Wei, G., Wei, C. et al. Pythagorean Fuzzy TODIM Method Based on the Cumulative Prospect Theory for MAGDM and Its Application on Risk Assessment of Science and Technology Projects. Int. J. Fuzzy Syst. 23, 1027–1041 (2021). https://doi.org/10.1007/s40815-020-00986-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00986-8

Keywords

Navigation