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Abstract Optimization is used to find the maximum or

minimum of a function. In this research, optimization is

applied to the objective function of the FCM algorithm.

FCM is an effective algorithm for grouping data, but it is

often trapped in local optimum solutions. Therefore, the

similarity measure in the clustering process using FCM is

very important. This study uses a new method, which

combines the Minkowski distance with the Chebyshev

distance which is used as a measure of similarity in the

clustering process on FCM. The amount of data that is

quite large and complex becomes one of the difficulties in

providing analysis of multivariate data. To overcome this,

one of the techniques used is dimensional reduction using

Principal Component Analysis (PCA). PCA is an algorithm

of the dimensional reduction method based on the main

components obtained from linear combinations, which can

help stabilize cluster analysis measurements. The method

used in this research is dimensional reduction using PCA,

clustering using FCM with a combination of Minkowski

and Chebyshev distances (FCMMC), and clustering eval-

uation using the Davies Bouldin Index (DBI). The purpose

of this research is to minimize the objective function of

FCM using new distances, namely, the combination of

Minkowski and Chebyshev distances through the assis-

tance of dimensional reduction by PCA. The results

showed that the cluster accuracy of the combined appli-

cation of the PCA and FCMMC algorithms was 1.6468.

Besides, the minimum value of the combined objective

function of the two methods is also obtained, namely,

0.0373 which is located in the 15th iteration, where this

value is the smallest value of the 100 maximum iterations

set.

Keywords PCA � Fuzzy C-Means � Minkowski and

Chebyshev distance � Davies Bouldin Index

1 Introduction

Optimization is everywhere, although it can mean different

things from another perspective. From basic calculus,

optimization can be easily used to find the maximum or

minimum of a function [15]. Techniques in optimization

with or without using gradient information, depending on

the suitability of the problems that arise [15]. Uncon-

strained optimization is a problem consideration in per-

forming objective functions on real variables without

constraints on values. The simple unconstraint optimization

problem allows the maxima or minima of a univariate

function f xð Þ to be �1\x\þ1 (or the entire real

domain R); it can be written [15] as follows:

max or min f xð Þ; x 2 R;

for an unconstrained optimization problem, optimally

occurs at the critical point given the stationary condition

f 0 xð Þ ¼ 0. However, this stationary state is just a necessary

condition, not a sufficient condition. If f 0 x�ð Þ ¼ 0 and

f 00 x�ð Þ[ 0, this is the local minimum. Conversely, if

f 0 x�ð Þ ¼ 0 and f 00 x�ð Þ\0, then this is the local maximum.

Whatever the problem in the real world, it is usually

possible to formulate a constraint optimization problem in

the general form [15]:
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max =min
x2R

f xð Þ; x ¼ x1; x2; . . .; xnð ÞT2 Rn;

subject to

hi xð Þ ¼ 0; i ¼ 1; 2; 3; . . .;Mð Þ;
gj xð Þ� 0; j ¼ 1; . . .;Nð Þ;

where f xð Þ; hi xð Þ; and gj xð Þ are scalar functions of the real

vector x. There are M equality constraints and N inequality

constraints. In general, all function problems [f xð Þ; h xð Þ;
and g xð Þ] are nonlinear, requiring sophisticated optimiza-

tion techniques.

Data with large dimensions, when the algorithm is

applied to the grouping method, usually take time to

require. Therefore, the dimensional reduction can be used

to overcome this. The dimension reduction method used in

this study is Principal Component Analysis (PCA). PCA is

an unsupervised multivariate analysis method that is

effective for extracting high-dimensional data into low-

dimensional space without data variables, using linear

algebraic techniques to reduce dimensions that have

interconnected variables into new data with unrelated ones

called the main components [4]. Even though the data

dimensions are smaller, there will not be much information

because the variance of data is maintained at least 70–80%

[13].

Several studies related to the application of PCA to

improve the performance of the clustering method have

been carried out before, for example, a research conducted

by Ref. [14]. The research resulted in high performance in

determining the detail of fusion images. Another research

was also conducted by Ref. [11], which was applied to the

field of image processing and produced a level of 92.5%.

The application of PCA which was then followed by the

Fuzzy C-Means method was also carried out by previous

researchers, namely Ref. [2]. This study discusses the

algorithm for monitoring stations to monitor various

sources of air pollution, as well as checking the zone in

pollution. In this research, PCA is used as a method for

monitoring the sources of air pollution, while the Fuzzy

C-Means algorithm is used for the grouping stage of the

monitoring stations. This study uses Euclidean distance as

a measure of similarity and dissimilarity between objects in

the dataset. There is also another research conducted by

Ref. [16]. The research proposed an approach of mechan-

ical failure information extraction and recognition in the

early fault state variables, combined with the Principal

Component Analysis (PCA) algorithm with FCM algo-

rithm. The application results of this method to identify

variables deviation fault rotor test bed are acceptable.

Research on the application of Principal Component

Analysis (PCA) has been conducted by previous

researchers, including research by Ref. [1]. This research

resulted in a high accuracy rate of 96.07% by combining

PCA and Levenberg–Marquardt backpropagation (LMBP).

Also, there is other research about PCA by Ref. [8]. This

study aims to examine network interference. The results

obtained are as many as 10 main components with an

accuracy rate of 99.7%. Another study was also conducted

by Ref. [3]. This study uses PCA as a method in reducing

the dimensions of features in animals so that the output of

PCA will be used in the classification using the Logistic

Regression (LR) method. The accuracy obtained from the

research is 90%.

Fuzzy C-Means is a very effective algorithm, but the

random values at the center point make iterative processes

falling on the optimal local solution easily. The choice and

size of inequality play an important role in the cluster

structure of the data.

The use of the Fuzzy C-Means algorithm in the clus-

tering process has been carried out by several researchers

before, one of which is the research conducted by Ref. [6],

who is engaged in the health sector to discuss the seg-

mentation of brain tumors in patients using the Fuzzy

C-Means and K-Way algorithms. The results obtained are

that Fuzzy C-Means have better K-Means performance

because the resulting segmentation is more precisely

identified.

In this study, researchers used the new distance pro-

posed by [12] by combining the Minkowski and Chebyshev

distances. This distance has been applied to the classifi-

cation using the K-Nearest Neighbors (KNN) method and

produces a high degree of accuracy [12].

2 Preliminaries

2.1 Dimensional Reduction

Dimensional reduction is a method of reducing dimensions

on a dataset by applying certain considerations [5], namely,

maintaining the information contained in the dataset even

though the data are undergoing a reduction process, and

producing a smaller number of variables that will simplify

and speed up the process computing and data visualization.

Dimensional reduction can help stabilize the measurement

for additional statistical analysis, such as regression anal-

ysis or cluster analysis.

PCA is an unsupervised multivariate analysis method

that is effective for extracting high-dimensional data into

low-dimensional space without losing data characteristics,

using linear algebraic techniques to reduce dimensions that

have interrelated variables into new data with unrelated

variables called principal components [4]. Even though the

data dimensions are smaller, it will not lose much infor-

mation because data variance is maintained at least
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70–80%. PCA is done to obtain the main components

(principal components) that can explain most of the vari-

ance of data or can be said to be able to maintain most of

the information measured using only a few variables which

are the main components.

The calculation of PCA is based on the calculation of

eigenvalues and eigenvectors which indicate the magnitude

of the spread of data in a dataset. So, by using PCA, the

initial variable is p variable will be reduced to k new

variable which is called the principal component, with

k\ p. Even though it only uses k principal components, it

is still able to produce the same value using the p variable

[7]. The nature of the new variables formed from PCA is

that the number of variables is less and has no correlation

between the variables that are formed.

2.2 Clustering

Clustering is the process of grouping data based on the

similarity between data in a dataset, with learning without

direction or the so-called unsupervised. The clustered data

will have the same level which is high in the same cluster

but has a high degree of difference on different clusters.

Grouping done on a dataset is very important to obtain

information, and makes it easier to understand its elements.

Clustering is divided into two methods, namely, hard

clustering and fuzzy clustering. In this hard clustering

algorithm, several k-clusters will be formed, where each

data will only be one cluster member. While in fuzzy

clustering, each data is assumed to have the possibility to

be a member of several clusters with different degrees for

each group.

There are two basic methods in fuzzy clustering, the first

is Fuzzy C-Means (FCM), so named because this clustering

algorithm will be formed as many c-clusters that have been

previously determined. Furthermore, the second method is

Fuzzy Subtractive Clustering (FSC), where in this method

the number of clusters is not predetermined [9].

Fuzzy C-Means (FCM) was first introduced by Jim

Bezdek in 1981 which is an algorithm of clustering using

fuzzy grouping, so that data can be members of all classes

or clusters with different degrees of 0 to 1. The concept of

FCM first determines the cluster location that will mark the

average for each cluster, with the initial conditions being

inaccurate. Each data point has a minimum degree for each

cluster. In this condition, the cluster center and each data

level return repeatedly, so it can be seen that the cluster

center will move to the right location. This iteration is

based on minimizing the objective function assigned to the

cluster center weighted by the degree of each data.

2.3 Combined Distances Between Minkowski

and Chebyshev

Rodrigues [12] raises a new distance, namely, the combi-

nation of Minkowski and Chebyshev distances. The com-

bination of Minkowski and Chebyshev distances is shown

in the equation below:

d w1;w2;pð Þ x; yð Þ ¼ w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

k¼1

xk � ykj jpp

s

þ w2 max
n

k¼1
xk � ykj j;

ð1Þ

where xk and yk are the x and y values in the n dimension,

respectively. When w1 is greater than w2, the distance is

more like Minkowski. Conversely, if w2 is greater than w1,

then the distance is more like Chebyshev.

2.4 Validity Index

Davies Bouldin Index (DBI) is one of the methods used to

measure cluster validity in a clustering method. The pur-

pose of measurement with DBI is to maximize the distance

between clusters (inter-cluster) and to minimize the dis-

tance between data points (intra-cluster) in the same clus-

ter. If the inter-cluster distance is maximum (large value),

the similarity in characteristics between each cluster tends

to be small, so that the differences between clusters are

more pronounced. If the intra-cluster distance is minimum,

then each data in the cluster has a high degree of charac-

teristic similarity. A cluster will be considered to have an

optimal clustering scheme if it has a minimal Davies

Bouldin Index (DB) (close to 0) [10].

SSWi ¼
1

mi

X

mi

j¼1

d xj; ci
� �

; ð2Þ

SSBi;j ¼ d ci; cj
� �

; ð3Þ

Ri;j ¼
SSWi þ SSWj

SSBi;j
; ð4Þ

DBI ¼ 1

k

X

k

i¼1

max
i 6¼j

Ri;j

� �

: ð5Þ

3 Results and Discussion

The FCMMC algorithm is applied to the result of dimen-

sional reduction using PCA which has been calculated

previously. Dimensional reduction using PCA was applied

to hypertensive patient data with 5 original variables,

resulting in 3 principal components (main components) as

a linear combination between loading values and stan-

dardized data. Furthermore, the values of each data con-

tained in the 3 main components are used as input in the

clustering process using the Fuzzy C-Means method, a
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combination of the Minkowski and Chebyshev distance

(FCMMC). Input data consisted of 100 patient data sam-

ples with 3 variables, namely, PC1, PC2, and PC3. The data

will be grouped into 3 classes, namely, class 1 for mild

hypertension type, class 2 for moderate hypertension type,

and class 3 for severe hypertension type. The following

will display the data from the dimensional reduction by

PCA (Table 1).

The principle of the Fuzzy C-Means algorithm is to

minimize an objective function. The basic concept of

Fuzzy C-Means first determines the center of the cluster

which will mark the average location for each cluster. At

initial conditions, the center of this cluster is still inaccu-

rate. Each data point has a degree for each cluster. By

repeating the central cluster and the degree of each data

point, it can be seen that the center of the cluster will move

toward the right location. This iteration is based on mini-

mizing the objective function which describes the distance

from a given data point to the center of the cluster which is

weighted by the degree of the data point [9]. The objective

functions used in FCM with a combination of Minkowski

and Chebyshev distances are as follows:

min Jm U;Vð Þ ¼
X

c

i¼1

X

n

k¼1

likð Þm w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

l

j¼1

xkj � vij
�

�

�

�

pp

v

u

u

t þ w2 max
l

j¼1
xkj � vij
�

�

�

�

0

@

1

A;

subject to
X

c

i¼1

likð Þm¼ 1;

0\lik\1;

where Jm U;Vð Þ is the objective functions with respect to U

and V; c is the number of clusters; n is the amount of data;

m is the weighter rank, m 2 1;1½ Þ; U is the initial partition

matrix; V is the cluster center matrix; lik is the degree of

kth data membership in the ith cluster; w1 is the Minkowski

weights; w2 is the Chebyshev weights; xkj is the kth data in

the j variable; vij is the center of the ith cluster in the jth

variable; p is the Minkowski parameters.

The initial defined values for the grouping of data

resulting from the reduction of dimensions are as follows:

c ¼ 3;w1 ¼ 3; w2 ¼ 2; p ¼ 4;m ¼ 2; maxiter ¼ 100; e ¼
10�5. Then, we obtain the initial partition random matrix

that meets the constraints
P

c

i¼1

likð Þm¼ 1. The partition

matrix is shown as follows:

Uð0Þ ¼

0:1789 0:0786 0:7425
0:4496 0:3524 0:1980
0:1252

..

.

0:2688
0:5351
0:7809

0:2773
..
.

0:0819
0:4130
0:1588

0:5975
..
.

0:6493
0:0520
0:0602

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

:

Each data object has a certain degree of membership in

each cluster. The value of the largest degree of membership

shows the tendency of the data object to become a member

of the cluster.

Furthermore, the cluster center is obtained for the first

iteration, namely,

v
1ð Þ
ij ¼

�0:0550 0:0775 0:0152
0:0798 �0:1368 0:0179
0:1184 �0:0334 �0:0164

2

4

3

5:

where i ¼ 1; 2; 3 and j ¼ 1; 2; 3:

The objective function that results from the first iteration

is

F 1ð Þ ¼
X

c

i¼1

X

n

k¼1

likð Þm w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

l

j¼1

xkj � vij
�

�

�

�

pp

v

u

u

t þ w2 max
l

j¼1
xkj � vij
�

�

�

�

0

@

1

A

¼ 330:3307:

It is found that

F
1ð Þ
FCMMC U;Vð Þ � F

0ð Þ
FCMMC U;Vð Þ

�

�

�

�

�

�
¼ 330:3307[ e; then

proceed to iteration 2. Update the new partition matrix and

calculate the center cluster in the second iteration using a

sequential equation:

lik ¼

1

w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn

k¼1
xkj�vijj jpp

p

þw2 maxn
k¼1

xkj�vijj j
� �

 ! 1
m�1

Pn
k¼1

1

w1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn

k¼1
xkj�vijj jpp

p

þw2 maxn
k¼1

xkj�vijj j
� �

 ! 1
m�1

;

vij ¼
Pn

k¼1 l
m
ikxkj

Pn
k¼1 l

m
ik

:

The iteration process will stop when it meets the stop

condition, when t[maxiter or when

F
tð Þ
FCMMC U;Vð Þ � F

t�1ð Þ
FCMMC U;Vð Þ

�

�

�

�

�

�
\e. The application of

the FCMMC method, which is carried out on the result of

dimensional reduction with PCA, undergoes an iteration

process stop when t = 100, this happens because it has met

the stopping condition, namely, t[maxiter.

Table 1 Data from PCA dimension reduction

No. PC1 PC2 PC3

1 1.0952 1.3483 - 0.1778

2 - 1.3153 0.1893 1.7954

3 0.5015 - 0.7913 - 0.4487

..

. ..
. ..

. ..
.

99 - 0.3543 0.9746 0.3117

100 - 0.3945 - 0.0928 - 0.9341
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The cluster center output in the last iteration when

t = 100 was as follows:

v
100ð Þ
ij ¼

�0:0608 0:0816 0:0083
0:0222 �0:0826 0:0078
0:0406 �0:0022 �0:0161

2

4

3

5;
i ¼ 1; 2; 3
j ¼ 1; 2; 3:

The graph of the cluster center in the last iteration, when

t = 100, is shown in Fig. 1.

Fuzzy C-Means has a weakness that is trapped in an

optimum local solution. Of the 100 iterations carried out,

the clustering process reached the minimum point at the

time of the 15th iteration, with a value of 0.0373. The

graph of the objective function values for each iteration is

shown in Fig. 2.

As for the new partition matrix generated in the last

iteration, when t = 100 is

Uð0Þ ¼

0:3496 0:3142 0:3364
0:3386 0:3340 0:3273
0:2892

..

.

0:3341
0:3715
0:3319

0:3760
..
.

0:3208
0:2997
0:3288

0:3348
..
.

0:3451
0:3289
0:3394

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

:

So, from the new partition matrix generated in the last

iteration when t = 100, the following clustering is obtained

(Table 2).

The results of clustering using the Fuzzy C-Means

algorithm with a distance between Minkowski and Che-

byshev (FCMMC), namely, the data in group 1 are inclu-

ded in the mild hypertension class, data in group 2 are

included in the moderate hypertension class, and data

contained in group 3 are included in class severe

hypertension.

Each data resulted from the FCMMC clustering process,

each grouped according to the resulting cluster. The SSW

values are obtained as follows:

SSW1 ¼ 5:4171
SSW2 ¼ 3:9744
SSW3 ¼ 7:6456:

Furthermore, the value of SSB obtained from the cal-

culation results is

SSB12 ¼ 6:3353
SSB13 ¼ 7:5549
SSB23 ¼ 8:5845:

Thus, the DBI value obtained is 1.6468. This DBI value

is a measure of the accuracy of the clustering results.

4 Conclusion

In this paper, we introduce a new distance, namely, the

combination of Minkowski and Chebyshev distances as a

similarity measure applied to the clustering process using

Fig. 1 Centroid at t = 100

Fig. 2 Value of the objective function of each iteration

Table 2 FCMMC clustering results

Data Group

1, 2, 4, 6, 7, 8, 9, 10, 11, 14, 19, 22, 25, 26, 27, 29, 34, 35, 38, 41, 48, 49, 51, 54, 57, 58, 59, 63, 66, 67, 68, 69, 70, 71, 73, 76, 77, 79, 80,

81, 82, 83, 84, 87, 93, 94, 95, 96, 97, 99

1

33, 36, 37, 42, 56, 92 2

3, 5, 12, 13, 15, 16, 17, 18, 20, 21, 23, 24, 30, 31, 32, 39, 40, 43, 44, 45, 46, 47, 50, 52, 53, 55, 60, 61, 62, 64, 65, 72, 74, 75, 78, 85, 86,

88, 89, 90, 91, 98, 100

3
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Fuzzy C-Means. Besides, this paper also combines the

PCA algorithm into Fuzzy C-Means with the Minkowski

and Chebyshev Distance Combination, as an effort to

optimize the clustering process. The applications of these

methods are new because previously there were no

researchers who combined the two methods.

Based on the results and discussion of this study, it can

be concluded that the PCA calculation produces 3 new

variables as the main component (principal component) of

the 5 variables studied, where the main component is the

factor that most influences one’s hypertension. Further-

more, the clustering accuracy obtained for the FCMMC

which is applied to the dimensional reduction data with

PCA has an accuracy value of 1.6468 and the minimum

point of 100 iterations in the FCMMC process is achieved

at the time of the 15th iteration which is 0.0373.
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