Skip to main content
Log in

Structure Identification of Recursive TSK Particle Filtering via Type-2 Intuitionistic Fuzzy Decision

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

To reduce the dimension and realize the adaptive adjustment of the fuzzy rules in the Takagi–Sugeno–Kang (TSK) model, a recursive TSK particle filtering algorithm based on type-2 intuitionistic fuzzy decision is proposed. In the proposed algorithm, we mainly emphasize on the structure identification of the TSK fuzzy model. Firstly, the similarity of features is calculated by the ridge reduction distribution function. Secondly, the type-2 fuzzy membership degree is applied to redefined a new intuitionistic fuzzy set, which is used to calculate the decision score (type-2 intuitionistic fuzzy membership degree) of each attribute feature. And we select the appropriate features (premise variables) by the threshold decision principle. Thirdly, the importance density function of particle filtering is constructed with the estimation results of the proposed TSK fuzzy model, which can effectively reduce the particle degradation phenomenon. Finally, the results of experiments on datasets show that the proposed algorithm is efficient and is excellent at handling the nonlinear non-Gaussian problem in the maneuvering target tracking system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sumati, V., Patvardhan, C.: Interval type-2 mutual subsethood fuzzy neural inference system (IT2MSFuNIS). IEEE Trans. Fuzzy Syst. 26(1), 203–215 (2018)

    Google Scholar 

  2. Sule, M.-J., Li, M., Taylor, G., Onime, C.: Fuzzy logic approach to modeling trust in cloud computing. IET Cyber-Phys. Syst. Theory Appl. 2(2), 84–89 (2017)

    Google Scholar 

  3. Lughofer, E., Pratama, M.: Online active learning in data stream regression using uncertainty sampling based on evolving generalized fuzzy models. IEEE Trans. Fuzzy Syst. 26(1), 292–309 (2018)

    Google Scholar 

  4. Li, Y., Liu, L., Feng, G.: Finite-time H∞ controller synthesis of T-S fuzzy systems. IEEE Trans. Syst. Man Cybern. 99, 1–8 (2018)

    Google Scholar 

  5. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMS-15(1), 116–132 (1985)

    MATH  Google Scholar 

  6. Zou, W., Li, C., Zhang, N.: A T-S fuzzy model identification approach based on a modified inter type-2 FRCM algorithm. IEEE Trans. Fuzzy Syst. 26(3), 1104–1113 (2018)

    Google Scholar 

  7. Luo, M., Sun, F., Liu, H.: Joint block structure sparse representation for multi-input–multi-output (MIMO) T-S fuzzy system identification. IEEE Trans. Fuzzy Syst. 22(6), 1387–1400 (2014)

    Google Scholar 

  8. Ren, L., Irwin, G.W.: Robust fuzzy Gustafson–Kessel clustering for nonlinear system identification. Int. J. Syst Sci. 34(14–15), 787–803 (2003)

    MATH  Google Scholar 

  9. Alcala, R., Alcala-Fdez, J., Herrera, F.: A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection. IEEE Trans. Fuzzy Syst. 15(4), 616–635 (2007)

    MATH  Google Scholar 

  10. Cordon, O., Herrera, F.: A two-stage evolutionary process for designing TSK fuzzy rule-based systems. IEEE Trans. Cybern. 29(6), 703–715 (1999)

    Google Scholar 

  11. Deng, Z., Choi, K.S., Chung, F.L., et al.: Scalable TSK fuzzy modeling for very large datasets using minimal-enclosing-ball approximation. IEEE Trans. Fuzzy Syst. 19(2), 210–226 (2011)

    Google Scholar 

  12. Pal, N.R., Saha, S.: Simultaneous structure identification and fuzzy rule generation for takagi-sugeno models. IEEE Trans. Syst. Man Cybern. B 38(6), 1626–1638 (2008)

    Google Scholar 

  13. Wang, S., Gu, X.Q.: Bayesian Takagi–Sugeno–Kang fuzzy model and its joint learning of structure identification and parameter estimation. IEEE Trans. Ind. Inf. 14(12), 5327–5337 (2018)

    Google Scholar 

  14. Mao, Y., Zhou, X.B., Xia, Z., et al.: A summary of the research on feature selection algorithms. Pattern Recogn. Artif. Intell. 20(2), 211–218 (2007) (in Chinese)

    Google Scholar 

  15. Yao, S., Xu, F., Zhao, P., et al.: Feature selection of intuitionistic fuzzy entropy based on adaptive neighborhood rough set model. Comput. Res. Dev. 55(04), 132–144 (2018) (in Chinese)

    Google Scholar 

  16. Tang, C., Liu, X., Li, M., et al.: Robust unsupervised feature selection via dual self-representation and manifold regularization. Knowl Based Syst. 145, 109–120 (2018)

    Google Scholar 

  17. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    MATH  Google Scholar 

  18. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    MATH  Google Scholar 

  19. Gong, Y.B., Ding, D.C., He, J.M.: Multi-attribute decision-making method based on intuitionistic fuzzy set similarity. Control Decis. 24(9), 1398–1401 (2009) (in Chinese)

    Google Scholar 

  20. Li, J., Xie, W.X., Li, L.Q.: Online visual multiple target tracking by intuitionistic fuzzy data association. Int. J. Fuzzy Syst. 19(2), 355–366 (2017)

    MathSciNet  Google Scholar 

  21. Cao, H.Q., Zhu, G.X., Zhu, Y.T., et al.: Image edge detection method based on IFS. Signal Process. 4, 330–334 (1997) (in Chinese)

    Google Scholar 

  22. Xie, W.X., Pei, J.H., Li, L.Q.: The Theory and Application of Fuzzy Information Processing, p. 8. Science Publishing, Beijing (2018) (in Chinese)

    Google Scholar 

  23. Ananthi, V.P., Balasubramaniam, P., Lim, C.P.: Segmentation of gray scale image based on intuitionistic fuzzy sets constructed from several membership functions. Pattern Recogn. 47(12), 3870–3880 (2014)

    Google Scholar 

  24. Xu, Z., Wu, J.: Intuitionistic fuzzy C-means clustering algorithms. J. Syst. Eng. Electron. 21(4), 580–590 (2010)

    MathSciNet  Google Scholar 

  25. Liang-qun, L., Wei-xin, X.: Intuitionistic fuzzy joint probabilistic data association filter and its application to multitarget tracking. Signal Process. 96, 433–444 (2014)

    Google Scholar 

  26. Li, L.Q., Wang, X.L., Liu, Z.X., et al.: A novel intuitionistic fuzzy clustering algorithm based on feature selection for multiple object tracking. Int. J. Fuzzy Syst. 21(5), 1613–1628 (2019)

    Google Scholar 

  27. Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)

    Google Scholar 

  28. Liang, Q.L.Q., Mendel, J.M.: Equalization of nonlinear time-varying channels using type-2 fuzzyadaptive filters. IEEE Trans. Fuzzy Syst. 8(5), 551–563 (2000)

    Google Scholar 

  29. Lam, H.K., Li, H., et al.: Control design for interval type-2 fuzzy systems under imperfect premise matching. IEEE Trans. Ind. Electron. 61(2), 956–968 (2013)

    Google Scholar 

  30. Castillo, O., Cervantes, L., Soria, J., et al.: A generalized type-2 fuzzy granular approach with applications to aerospace. Inf. Sci. 354(1), 165–177 (2016)

    Google Scholar 

  31. Ontiveros-Robles, E., Melin, P., Castillo, O.: Comparative analysis of noise robustness of type 2 fuzzy logic controllers. Kybernetika 54(1), 175–201 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Gao, Y., Hongyi, L., Ligang, W., et al.: Optimal control of discrete-time interval type-2 fuzzy-model-based systems with D-stability constraint and control saturation. Signal Process. 120, 409–421 (2016)

    Google Scholar 

  33. Gao, Y., Xiao, F., Liu, J., et al.: Distributed soft fault detection for interval type-2 fuzzy-model-based stochastic systems. IEEE Trans. Ind. Inf. 15(1), 334–347 (2018)

    Google Scholar 

  34. Eyoh, I., John, R., Maere, G.D., et al.: Hybrid learning for interval type-2 intuitionistic fuzzy logic systems as applied to identification and prediction problems. IEEE Trans. Fuzzy Syst. 99, 1 (2018)

    Google Scholar 

  35. Singh, S., Garg, H.: Distance measures between type-2 intuitionistic fuzzy sets and their application to multicriteria decision-making process. Appl. Intell. 46(4), 788–799 (2017)

    Google Scholar 

  36. Li, L.-Q., Wang, X.-L., Xie, W.-X., Liu, Z.-X.: A novel recursive T-S fuzzy semantic modeling approach for discrete state-space systems. Neurocomputing 340, 222–232 (2019)

    Google Scholar 

  37. Wang, X., Li, L., Xie, W.: A novel FEM based T-S fuzzy particle filtering for bearings-only maneuvering target tracking. Sensors 19, 2208 (2019). https://doi.org/10.3390/s19092208

    Article  Google Scholar 

  38. Li, J.Q., Zhao, R.H., Chen, J.L., Zhao, C.Y., Zhu, Y.P.: Target tracking algorithm based on adaptive strong tracking particle filter. IET Sci. Meas. Technol. 10, 704–710 (2016)

    Google Scholar 

  39. Dubey, Y.K., Mushrif, M.M., Mitra, K.: Segmentation of brain MR images using rough set based intuitionistic fuzzy clustering. Biocybern. Biomed. Eng. 36(2), 413–426 (2016)

    Google Scholar 

  40. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 1995, pp. 1137–1143.

  41. Schmaedeke, W.W., Kastella, K.D.: Information-based sensor management and IMMKF. Proc. SPIE Int. Soc. Opt. Eng. 3373(9), 390–401 (1998)

    Google Scholar 

  42. Malleswaran, M., Vaidehi, V., Irwin, S., et al.: IMM-UKF-TFS model-based approach for intelligent navigation. J. Navigation 66(6), 859–877 (2013)

    Google Scholar 

  43. Boers, Y., Driessen, J.N.: Interacting multiple model particle filter. IEEE Proc. 150(5), 344–349 (2003)

    Google Scholar 

  44. Li, L.Q., Xie, W.X., Huang, J.X., Huang, J.J.: Multiple model Rao-blackwellized particle filter for maneuvering target tracking. Int. J. Defence Sci. 59(3), 197–204 (2009)

    Google Scholar 

  45. Xiaoli, Wang, Liangqun, Li, Weixin, Xie: A novel T-S fuzzy particle filtering algorithm based on fuzzy C-regression clustering. Int. J. Approx. Reason. 117(1), 81–95 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61773267), Science & Technology Program of Shenzhen (JCYJ20170302145519524), and Natural Science Foundation of Hunan Province of China (No. 2018JJ3213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-qun Li.

Appendix

Appendix

According to the Eqs. (9) and (10), the objective functions \(J_{1} ,J_{2}\) of the following Type-2 intuitionistic fuzzy algorithm are obtained :

$$J_{1} = \sum\limits_{i = 1}^{Q + 1} {\sum\limits_{j = 1}^{C} { - \left( {\mu_{ij}^{1} \left( {M_{i} } \right)} \right)^{{m_{1} }} \cdot f_{{_{ij} }}^{*} \left( {M_{i} } \right)} } + \lambda \sum\limits_{j = 1}^{C} {\mu_{ij}^{1} \left( {M_{i} } \right)}$$
$$J_{2} = \sum\limits_{i = 1}^{Q + 1} {\sum\limits_{j = 1}^{C} { - \left( {\mu_{ij}^{2} \left( {M_{i} } \right)} \right)^{{m_{2} }} \cdot f_{{_{ij} }}^{*} \left( {M_{i} } \right)} } + \lambda \sum\limits_{j = 1}^{C} {\mu_{ij}^{2} \left( {M_{i} } \right)}$$

Derivation of membership degree \(\mu_{ij}^{1}\) by objective function \(J_{1}\).

$$\frac{\partial J}{{\partial \mu_{ij}^{1} }} = - m_{1} \left( {\mu_{ij}^{1} \left( {M_{i} } \right)} \right)^{{m_{1} - 1}} f_{{_{ij} }}^{*} \left( {M_{i} } \right) + \lambda = 0$$
$$\mu_{ij}^{1} \left( {M_{i} } \right) = \left( {\frac{\lambda }{{m_{1} f_{{_{ij} }}^{*} \left( {M_{i} } \right)}}} \right)^{{\frac{1}{{m_{1} - 1}}}}$$

According to the constraint conditions \(\sum\nolimits_{j = 1}^{C} {\mu_{ij}^{1} \left( {M_{i} } \right)} = 1\), the results are obtained.

$$\sum\limits_{r = 1}^{C} {\left( {\frac{\lambda }{{m_{1} f_{{_{ir} }}^{*} \left( {M_{i} } \right)}}} \right)^{{\frac{1}{{m_{1} - 1}}}} } = 1$$
$$\left( {\frac{\lambda }{{m_{1} }}} \right)^{{\frac{1}{{m_{1} - 1}}}} = \frac{1}{{\sum\limits_{r = 1}^{C} {\left( {\frac{1}{{f_{{_{ir} }}^{*} \left( {M_{i} } \right)}}} \right)^{{\frac{1}{{m_{1} - 1}}}} } }}$$

Therefore,

$$\mu_{ij}^{1} \left( {M_{i} } \right) = \frac{1}{{\sum\limits_{r = 1}^{C} {\left( {\frac{1}{{f_{{_{ir} }}^{*} \left( {M_{i} } \right)}}} \right)^{{\frac{1}{{m_{1} - 1}}}} } }}\left( {\frac{1}{{f_{{_{ij} }}^{*} \left( {M_{i} } \right)}}} \right)^{{\frac{1}{{m_{1} - 1}}}} = \frac{1}{{\sum\limits_{r = 1}^{C} {\left[ {f_{{_{ij} }}^{*} \left( {M_{i} } \right)/f_{{_{ir} }}^{*} \left( {M_{i} } \right)} \right]^{{1/\left( {m_{1} - 1} \right)}} } }}$$

In the same way, the objective function \(J_{2}\) can be derived from the membership degree \(\mu_{ij}^{2}\).

$$\mu_{ij}^{2} \left( {M_{i} } \right) = \frac{1}{{\sum\limits_{r = 1}^{C} {\left( {\frac{1}{{f_{{_{ir} }}^{*} \left( {M_{i} } \right)}}} \right)^{{\frac{1}{{m_{2} - 1}}}} } }}\left( {\frac{1}{{f_{{_{ij} }}^{*} \left( {M_{i} } \right)}}} \right)^{{\frac{1}{{m_{2} - 1}}}} = \frac{1}{{\sum\limits_{r = 1}^{C} {\left[ {f_{{_{ij} }}^{*} \left( {M_{i} } \right)/f_{{_{ir} }}^{*} \left( {M_{i} } \right)} \right]^{{1/\left( {m_{2} - 1} \right)}} } }}$$

According to the idea of Type-2 fuzzy C regression clustering, if \(\frac{1}{{\sum\nolimits_{r = 1}^{C} {\left[ {f_{{_{ij} }}^{*} \left( {M_{i} } \right)/f_{{_{ir} }}^{*} \left( {M_{i} } \right)} \right]} }} < \frac{1}{C}\), the objective function \(J_{1}\) is used to derive the membership degree \(\mu_{ij}^{1}\). On the contrary, the objective function \(J_{2}\) is used to derive the membership degree \(\mu_{ij}^{2}\). The upper membership function shown in Eq. (11) can be obtained.

$$\bar{\mu }_{ij} = \left\{ {\begin{array}{*{20}l} {\frac{1}{{\sum\nolimits_{r = 1}^{C} {\left[ {f_{{_{ij} }}^{*} \left( {M_{i} } \right)/f_{{_{ir} }}^{*} \left( {M_{i} } \right)} \right]^{{1/\left( {m_{1} - 1} \right)}} } }},} \hfill & {\frac{1}{{\sum\nolimits_{r = 1}^{C} {\left[ {f_{{_{ij} }}^{*} \left( {M_{i} } \right)/f_{{_{ir} }}^{*} \left( {M_{i} } \right)} \right]} }} < \frac{1}{C}} \hfill \\ {\frac{1}{{\sum\nolimits_{r = 1}^{C} {\left[ {f_{{_{ij} }}^{*} \left( {M_{i} } \right)/f_{{_{ir} }}^{*} \left( {M_{i} } \right)} \right]^{{1/\left( {m_{2} - 1} \right)}} } }},} \hfill & {otherwise} \hfill \\ \end{array} } \right.$$

If \(\frac{1}{{\sum\nolimits_{r = 1}^{C} {\left[ {f_{{_{ij} }}^{*} \left( {M_{i} } \right)/f_{{_{ir} }}^{*} \left( {M_{i} } \right)} \right]} }} \ge \frac{1}{C}\), the objective function \(J_{1}\) is used to derive the membership degree \(\mu_{ij}^{1}\). On the contrary, the objective function \(J_{2}\) is used to derive the membership degree \(\mu_{ij}^{2}\). The lower membership function shown in Eq. (12) can be obtained.

$$\mu_{ij}^{'} = \left\{ {\begin{array}{*{20}l} {\frac{1}{{\sum\nolimits_{r = 1}^{C} {\left[ {f_{{_{ij} }}^{*} \left( {M_{i} } \right)/f_{{_{ir} }}^{*} \left( {M_{i} } \right)} \right]^{{1/\left( {m_{1} - 1} \right)}} } }},} \hfill & {\frac{1}{{\sum\nolimits_{r = 1}^{C} {\left[ {f_{{_{ij} }}^{*} \left( {M_{i} } \right)/f_{{_{ir} }}^{*} \left( {M_{i} } \right)} \right]} }} \ge \frac{1}{C}} \hfill \\ {\frac{1}{{\sum\nolimits_{r = 1}^{C} {\left[ {f_{{_{ij} }}^{*} \left( {M_{i} } \right)/f_{{_{ir} }}^{*} \left( {M_{i} } \right)} \right]^{{1/\left( {m_{2} - 1} \right)}} } }},} \hfill & {otherwise} \hfill \\ \end{array} } \right.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xl., Xie, Wx. & Li, Lq. Structure Identification of Recursive TSK Particle Filtering via Type-2 Intuitionistic Fuzzy Decision. Int. J. Fuzzy Syst. 23, 1294–1312 (2021). https://doi.org/10.1007/s40815-020-01021-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-01021-6

Keywords

Navigation