Skip to main content
Log in

Asynchronous Filtering for Delayed Fuzzy Jump Systems Subject to Mixed Passivity and \({\user2{H\infty }} \) Performance

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper investigates asynchronous mixed passivity and \(H\infty \) filter design for fuzzy jump systems with time-varying delays. Firstly, new time delay-dependent stability conditions for the fuzzy Markovian jump systems are obtained by constructing a mode-dependent Lyapunov functional and introducing free weight matrices technique. Secondly, the asynchronous filter is designed via linear matrix inequalities, which can ensure stochastic stability and the mixed passivity and \(H\infty \) performance of the augmented Markovian jump filtering error system. A numerical example and a single-link robot arm are utilized to show the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu, S., Lam, J., Mao, X.: Delay-dependent \(H_{\infty }\) control and filtering for uncertain Markovian jump systems with time-varying delays. IEEE Trans. Circuits Syst. Regul. Pap. 54(9), 2070–2077 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Sathishkumar, M., Sakthivel, R., Alzahrani, F., Kaviarasan, B., Ren, Y.: Mixed \(H\infty \) and passivity-based resilient controller for nonhomogeneous Markov jump systems. Nonlinear Anal. Hybrid Syst. 31, 86–99 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Zhang, J., Li, M., Raissi, T.: Reliable actuator fault control of positive switched systems with double switchings. Asian J. Control (2020). https://doi.org/10.1002/asjc.2338

    Article  Google Scholar 

  4. Zhang, J., Raissi, T.: Saturation control of switched nonlinear systems. Nonlinear Anal. Hybrid Syst. 32, 320–336 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Zong, G., Qi, W., Karimi, H.R.: \(L_{1}\) control of positive semi-Markov jump systems with state delay. IEEE Trans. Syst. Man Cybern. A (2020). https://doi.org/10.1109/TSMC.2020.2980034

    Article  Google Scholar 

  6. Liu, L., Zhang, J., Shao, Y., Deng, X.: Event-triggered control of positive switched systems based on linear programming. IET Control Theory Appl. 14(1), 145–155 (2019)

    Google Scholar 

  7. Song, J., Niu, Y., Lam, J., Shu, Z.: A hybrid design approach for output feedback exponential stabilization of Markovian jump systems. IEEE Trans. Autom. Control 63(5), 1404–1417 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Xia, J., Chen, G., Park, J.H., Shen, H., Zhuang, G.: Dissipativity-based sampled-data control for fuzzy switched Markovian jump systems. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2970856

    Article  Google Scholar 

  9. Wu, Z., Dong, S., Su, H., Li, C.: Asynchronous dissipative control for fuzzy Markov jump systems. IEEE Trans. Syst. Man Cybern. 48(8), 2426–2436 (2018)

    Google Scholar 

  10. Zong, G., Ren, H., Karimi, H.R.: Event-triggered communication and annular finite-time \(H_{\infty }\) filtering for networked switched systems. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3010917

    Article  Google Scholar 

  11. Zhuang, G., Xia, J., Feng, J., Sun, W., Zhang, B.: Admissibilization for implicit jump systems with mixed retarded delays based on reciprocally convex integral inequality and Barbalat’s lemma. IEEE Trans. Syst. Man Cybern. https://doi.org/10.1109/TSMC.2020.2964057

  12. Feng, Z., Shi, P.: Sliding mode control of singular stochastic Markov jump systems. IEEE Trans. Autom. Control 62(8), 4266–4273 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Li, F., Xu, S., Shen, H.: Fuzzy-model-based \(H_{\infty }\) control for Markov jump nonlinear slow sampling singularly perturbed systems with partial information. IEEE Trans. Fuzzy Syst. 27(10), 1952–1962 (2019)

    Google Scholar 

  14. Zhao, X., Shi, P., Yin, Y., Nguang, S.K.: New results on stability of slowly switched systems: a multiple discontinuous Lyapunov function approach. IEEE Trans. Autom. Control 62(7), 3502–3509 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Huang, D., Yang, C., Pan, Y., Cheng, L.: Composite learning enhanced neural control for robot manipulator with output error constraints. IEEE Trans. Ind. Inform. 17(1), 209–218 (2020)

    Google Scholar 

  16. Zhang, D., Cheng, J., Ahn, C.K., Ni, H.: A flexible terminal approach to stochastic stability and stabilization of continuous-time semi-Markovian jump systems with time-varying delay. Appl. Math. Comput. 342, 191–205 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Zhao, D., Karimi, H.R., Sakthivel, R., Li, Y.: Non-fragile fault-tolerant control for nonlinear Markovian jump systems with intermittent actuator fault. Nonlinear Anal. Hybrid Syst. 32, 337–350 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Cheng, J., Park, J.H., Cao, J., Qi, W.: A hidden mode observation approach to finite-time SOFC of Markovian switching systems with quantization. Nonlinear Dyn. 100, 509–521 (2020)

    MATH  Google Scholar 

  19. Xu, Z., Ni, H., Karimi, H.R., Zhang, D.: A Markovian jump system approach to consensus of heterogeneous multi-agent systems with partially unknown and uncertain attack strategies. Int. J. Robust Nonlinear Control 30, 3039–3053 (2020)

    MATH  Google Scholar 

  20. Liu, Y., Zeng, Q., Tong, S., Chen, C.L.P., Liu, L.: Adaptive neural network control for active suspension systems with time-varying vertical displacement and speed constraints. IEEE Trans. Ind. Electron. 66(12), 9458–9466 (2019)

    Google Scholar 

  21. Yang, Y., Zhao, J., Xia, J., Zhuang, G., Zhang, W.: Multiobjective optimization control for uncertain nonlinear stochastic system with state-delay. Int. J. Fuzzy Syst. 21(1), 72–83 (2019)

    MathSciNet  Google Scholar 

  22. Jiao, T., Zheng, W., Xu, S.: Unified stability criteria of random nonlinear time-varying impulsive switched systems. IEEE Trans. Circuits Syst. Regul. Pap. (2020). https://doi.org/10.1109/TCSI.2020.2983324

    Article  MathSciNet  Google Scholar 

  23. Liu, Y., Zeng, Q., Tong, S., Chen, C.L.P., Liu, L.: Actuator failure compensation-based adaptive control of active suspension systems with prescribed performance. IEEE Trans. Ind. Electron. 67(8), 7044–7053 (2020)

    Google Scholar 

  24. Sun, W., Su, S.-F., Wu, Y., Xia, J.: A novel adaptive fuzzy control for output constrained stochastic non-strict feedback nonlinear systems. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2969909

    Article  Google Scholar 

  25. Yuan, W., Sun, W., Liu, Z., Zhang, F.: Adaptive fuzzy tracking control of stochastic mechanical system with input saturation. Int. J. Fuzzy Syst. 21(8), 2600–2608 (2019)

    MathSciNet  Google Scholar 

  26. Kavikumar, R., Sakthivel, R., Kwon, O.M., Kaviarasan, B.: Reliable non-fragile memory state feedback controller design for fuzzy Markov jump systems. Nonlinear Anal. Hybrid Syst. 35, 100828 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Yang, C., Chen, C., He, W., Cui, R., Li, Z.: Robot learning system based on adaptive neural control and dynamic movement primitives. IEEE Trans. Neural Netw. Learn. Syst. 30(3), 777–787 (2019)

    MathSciNet  Google Scholar 

  28. Liu, Y., Gong, M., Liu, L., Tong, S., Chen, C.L.P.: Fuzzy observer constraint based on adaptive control for uncertain nonlinear MIMO systems with time-varying state constraints. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2933700

    Article  Google Scholar 

  29. Xia, J., Li, B., Su, S.-F., Sun, W., Shen, H.: Finite-time command filtered event-triggered adaptive fuzzy tracking control for stochastic nonlinear systems. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2985638

    Article  Google Scholar 

  30. Yang, C., Jiang, Y., Na, J., Li, Z., Cheng, L., Su, C.-Y.: Finite-time convergence adaptive fuzzy control for dual-arm robot with unknown kinematics and dynamics. IEEE Trans. Fuzzy Syst. 27(3), 574–588 (2018)

    Google Scholar 

  31. Chang, X., Yang, G.: Nonfragile \(H\infty \) filtering of continuous-time fuzzy systems. IEEE Trans. Signal Process. 59(4), 1528–1538 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Li, B., Xia, J., Zhang, H., Shen, H., Wang, Z.: Event-triggered adaptive fuzzy tracking control for nonlinear systems. Int. J. Fuzzy Syst. 22(5), 1389–1399 (2020)

    MATH  Google Scholar 

  33. Cheng, J., Shan, Y., Cao, J., Park, J.-H.: Nonstationary control for T–S fuzzy Markovian switching systems with variable quantization density. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2974440

    Article  Google Scholar 

  34. Xie, X., Yue, D., Peng, C.: Observer design of discrete-time fuzzy systems based on an alterable weights method. IEEE Trans. Cybern. 50(4), 1430–1439 (2020)

    Google Scholar 

  35. Zhuang, G., Sun, W., Su, S.-F., Xia, J.: Asynchronous feedback control for delayed fuzzy degenerate jump systems under observer-based event-driven characteristic. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.3027336

    Article  Google Scholar 

  36. Feng, Z., Zhang, H., Du, H.: Admissibilisation of singular interval type-2 Takagi–Sugeno fuzzy systems with time delay. IET Control Theory Appl. 14(8), 1022–1032 (2020)

    Google Scholar 

  37. Sun, W., Lin, J., Su, S.-F., Wang, N., Er, M.: Reduced adaptive fuzzy decoupling control for lower limb exoskeleton. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.2972582

    Article  Google Scholar 

  38. Kong, L., He, W., Yang, C., Li, Z., Sun, C.: Adaptive fuzzy control for coordinated multiple robots with constraint using impedance learning. IEEE Trans. Cybern. 49(8), 3052–3063 (2019)

    Google Scholar 

  39. Ding, S., Levant, A., Li, S.: Simple homogeneous sliding-mode controller. Automatica 67(5), 22–32 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Cheng, J., Park, J.H., Karimi, H.R., Zhao, X.: Static output feedback control of nonhomogeneous Markovian jump systems with asynchronous time delays. Inf. Sci. 399, 219–238 (2017)

    MATH  Google Scholar 

  41. Wu, Z., Shi, P., Shu, Z., Su, H., Lu, R.: Passivity-Based asynchronous control for Markov jump systems. IEEE Trans. Autom. Control 62(4), 2020–2025 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Ding, S., Li, S.: Second-order sliding mode controller design subject to mismatched term. Automatica 77, 388–392 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Ren, H., Zong, G., Karimi, H.R.: Asynchronous finite-time filtering of Markov jump nonlinear systems and its applications. IEEE Trans. Syst. Man Cybern. A (2019). https://doi.org/10.1109/TSMC.2019.2899733

    Article  Google Scholar 

  44. Zhang, D., Xu, Z., Feng, G., Li, H.: Asynchronous resilient output consensus of switched heterogeneous linear multivehicle systems with communication delay. IEEE/ASME Trans. Mechatron. 24(6), 2627–2640 (2019)

    Google Scholar 

  45. Zhuang, G., Su, S.-F., Xia, J., Sun, W.: HMM-based asynchronous \(H\infty \) filtering for fuzzy singular Markovian switching systems with retarded time-varying delays. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.2977127

    Article  Google Scholar 

  46. Chang, X., Yang, G.: Nonfragile \(H\infty \) filter design for T–S fuzzy systems in standard form. IEEE Trans. Ind. Electron. 61(7), 3448–3458 (2014)

    Google Scholar 

  47. Xiong, J., Chang, X., Yi, X.: Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization. Appl. Math. Comput. 338, 774–788 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Liu, Y., Fang, F., Park, J.H.: Decentralized dissipative filtering for delayed nonlinear interconnected systems based on T–S fuzzy model. IEEE Trans. Fuzzy Syst. 27(4), 790–801 (2019)

    Google Scholar 

  49. Cheng, J., Park, J.H., Zhao, X., Karimi, H.R., Cao, J.: Quantized nonstationary filtering of network-based Markov switching RSNSs: a multiple hierarchical structure strategy. IEEE Trans. Autom. Control (2019). https://doi.org/10.1109/TAC.2019.2958824

    Article  MATH  Google Scholar 

  50. Bemporad, A., Bianchini, G., Brogi, F.: Passivity analysis and passification of discrete-time hybrid systems. IEEE Trans. Autom. Control 53(4), 1004–1009 (2008)

    MathSciNet  MATH  Google Scholar 

  51. Zhang, B., Zheng, W.X., Xu, S.: Delay-dependent passivity and passification for uncertain Markovian jump systems with time-varying delays. Int. J. Robust Nonlinear Control 22(16), 1837–1852 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Xiong, J., Lam, J.: Fixed-order robust \(H\infty \) filter design for Markovian jump systems with uncertain switching probabilities. IEEE Trans. Signal Process. 54(4), 1421–1430 (2006)

    MATH  Google Scholar 

  53. Liu, G., Xu, S., Park, J.H., Zhuang, G.: Reliable exponential \(H\infty \) filtering for singular Markovian jump systems with time-varying delays and sensor failures. Int. J. Robust Nonlinear Control 28(14), 4230–4245 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Zhang, B., Xu, S., Ma, Q., Zhang, Z.: Output-feedback stabilization of singular LPV systems subject to inexact scheduling parameters. Automatica 104, 1–7 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Yang, C., Peng, G., Li, Y., Cui, R., Cheng, L., Li, Z.: Neural networks enhanced adaptive admittance control of optimized robot–environment interaction. IEEE Trans. Cybern. 49(7), 2568–2579 (2018)

    Google Scholar 

  56. Xia, W., Li, Y., Chu, Y., Xu, S., Chen, W., Zhang, Z.: Observer-based mixed passive and \(H\infty \) control for uncertain Markovian jump systems with time delays using quantized measurements. Nonlinear Anal. Hybrid Syst. 31, 233–246 (2019)

    MathSciNet  MATH  Google Scholar 

  57. Zhang, B., Zheng, W.X., Xu, S.: Filtering of Markovian jump delay systems based on a new performance index. IEEE Trans. Circuits Syst. Regul. Pap. 60(5), 1250–1263 (2013)

    MathSciNet  Google Scholar 

  58. Shen, H., Wu, Z., Park, J.H.: Reliable mixed passive and \(H\infty \) filtering for semi-Markov jump systems with randomly occurring uncertainties and sensor failures. Int. J. Robust Nonlinear Control 25(17), 3231–3251 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editors and the Referees for their valuable comments and suggestions, which helped to greatly improve the work. This work was partially supported by the National Natural Science Foundation of China under Grants 61773191, 61973148, 62003154; Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions under Grant 2019KJI010; the Natural Science Foundation of Shandong Province for Outstanding Young Talents in Provincial Universities under Grant ZR2016JL025; Undergraduate Education Reform Project of Higher Education in Shandong Province under Grant M2018X047; Liaocheng University Education Reform Project Foundation under Grants G201811, 26322170267.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Zhuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Zhuang, G., Sun, W. et al. Asynchronous Filtering for Delayed Fuzzy Jump Systems Subject to Mixed Passivity and \({\user2{H\infty }} \) Performance. Int. J. Fuzzy Syst. 23, 1396–1413 (2021). https://doi.org/10.1007/s40815-020-01025-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-01025-2

Keywords

Navigation