Skip to main content
Log in

Predicting War Outcomes Based on a Fuzzy Influence Diagram

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Predicting or deducing war outcomes is the basis of military strategy formulation. Considering the high information uncertainty and complex influencing factors of modern wars, we applied a fuzzy influence diagram (FID) to realize the macroscopic prediction of war outcomes. In particular, we identified multidimensional factors that influence war outcomes in a relatively comprehensive and practical manner, thereby obtaining a relatively complete FID containing 24 nodes, with the value node “combat outcome” as the core. Subsequently, we performed a simulation analysis for a hypothetical war scenario to demonstrate the specific application and applicability of the proposed FID model. This study expands the prediction methods of war outcomes, and demonstrates that an FID can be feasibly applied in an uncertain battlefield environment to realize the prediction and risk assessment of war outcomes. Moreover, this approach can be used to analyze prewar decision making. The findings highlight that combat participants should attempt to further improve their military technology and combat effectiveness to gain combat advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boukhtouta, A., Jentsch, P.: Support vector machine for demand forecasting of canadian armed forces spare parts. In: 2018 6th International Symposium on Computational and Business Intelligence, pp. 59–64 (2018)

  2. Kim, J., Lee, H., Choi, S.: Machine learning based approach for demand forecasting anti-aircraft missiles. In: 2018 5th International Conference on Industrial Engineering and Applications, pp. 367–372 (2018)

  3. Xia, P.C., Chen, M., Zou, J., Feng, X.: Prediction of air target intention utilizing incomplete information. In: Proceedings of 2016 Chinese Intelligent Systems Conference, vol. I, pp. 404, 395–403 (2016)

  4. Huang, R., Liu, X.F., Zheng, X.: Research on performance quality prediction method of missile based on grey theory and SVM. In: Proceedings of the 2018 3rd International Conference on Modelling, Simulation and Applied Mathematics, vol. 160, pp. 140–145 (2018)

  5. Rasmi, M., Jantan, A.: Attack intention analysis model for network forensics. In: 2nd International Conference on Software Engineering and Computing Systems, vol. 180, pp. 403–411 (2011)

  6. Auten, J.R., Hammell, R.J.: Predicting terminal ballistics using an iterative application of an artificial neural network. In: 2017 Computing Conference, pp. 706–715 (2017)

  7. Chen, Y.W., Lee, Y.L., Kung, C.C.: Application of particle swarm optimization based on neural network for artillery range prediction. Control Eng. Appl. Inform. 16(4), 73–80 (2014)

    Google Scholar 

  8. Lagazio, M., Marwala, T.: Assessing different Bayesian neural network models for militarized interstate dispute. Soc. Sci. Comput. Rev. 24(1), 119–131 (2006)

    Google Scholar 

  9. Bidyuk, P., Gozhyj, A., Kalinina, I.: Modeling military conflicts using bayesian networks. In: 2018 Ieee First International Conference on System Analysis & Intelligent Computing, pp. 155–160 (2018)

  10. Yu, Y.T., Ding, Y.: Improved dynamic Bayesian networks in sea-battlefield situation assessment. Adv. Mater. Res. 936, 2149–2154 (2014)

    Google Scholar 

  11. Wiper, M.P., Pettit, L.I., Young, K.: Bayesian inference for a Lanchester type combat model. Naval Res. Logist. 47(7), 541–558 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Koyuncu, B., Bostanci, E.: Using Lanchester combat models to aid battlefield visualization. In: 2nd IEEE International Conference on Computer Science and Information Technology, pp. 290–292 (2009)

  13. Chen, P.S., Chu, P.: Applying Lanchester’s linear law to model the Ardennes campaign. Naval Res. Logist. 48(8), 653–661 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Lucas, T.W., Dinges, J.A.: The effect of battle circumstances on fitting Lanchester equations to the Battle of Kursk. Mil. Oper. Res. 9(2), 17–30 (2004)

    Google Scholar 

  15. Lucas, T.W., Turkes, T.: Fitting Lanchester equations to the battles of Kursk and Ardennes. Naval Res. Logist. 51(1), 95–116 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Kress, M., Caulkins, J.P., Feichtinger, G., Grass, D., Seidl, A.: Lanchester model for three-way combat. Eur. J. Oper. Res. 264(1), 46–54 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Jiang, Y.L., Liang, Z.Z., Gao, H., Guo, Y., Zhong, Z.M., Yang, C., Liu, J.X.: An improved constraint-based Bayesian network learning method using Gaussian kernel probability density estimator. Expert Syst. Appl. 113, 544–554 (2018)

    Google Scholar 

  18. Zhang, Z., Zhou, Q., Wu, C., Li, H.Y.: Dissipativity-based reliable interval type-2 fuzzy filter design for uncertain nonlinear systems. Int. J. Fuzzy Syst. 20(2), 390–402 (2018)

    MathSciNet  Google Scholar 

  19. Chen, S.M., Chiou, C.H.: Multiattribute decision making based on interval-valued intuitionistic fuzzy sets, PSO techniques, and evidential reasoning methodology. Trans. Fuzzy Syst. 23(6), 1905–1916 (2015)

    Google Scholar 

  20. Wang, L.Y., Guo, Z.X., Zhang, Y.F., Shang, Y.S., Zhang, L.: An emergency supplies demand prediction model based on intuitionistic fuzzy case reasoning. J. China Univ. Min. Technol. 44(4), 775–780 (2015)

    Google Scholar 

  21. Li, R.M., Huang, Y.F., Wang, J.: Long-term traffic volume prediction based on type-2 fuzzy sets with confidence interval method. Int. J. Fuzzy Syst. 21(7), 2120–2131 (2019)

    Google Scholar 

  22. Liu, P.D., Zhu, B.Y., Wang, P.: A multi-attribute decision-making approach based on spherical fuzzy sets for Yunnan Baiyao’s R&D project selection problem. Int. J. Fuzzy Syst. 21(7), 2168–2191 (2019)

    Google Scholar 

  23. Liang, R., Wang, J.Q.: A linguistic intuitionistic cloud decision support model with sentiment analysis for product selection in E-commerce. Int. J. Fuzzy Syst. 21(3), 963–977 (2019)

    Google Scholar 

  24. Iakovidis, D.K., Papageorgiou, E.: Intuitionistic fuzzy cognitive maps for medical decision making. IEEE Trans. Inf Technol. Biomed. 15(1), 100–107 (2011)

    Google Scholar 

  25. Hamedan, F., Orooji, A., Sanadgol, H., Sheikhtaheri, A.: Clinical decision support system to predict chronic kidney disease: a fuzzy expert system approach. Int. J. Med. Inform. 138, 1–9 (2020)

    Google Scholar 

  26. Cordero, P., Enciso, M., Lopez, D., Mora, A.: A conversational recommender system for diagnosis using fuzzy rules. Expert Syst. Appl. 154, 1–12 (2020)

    Google Scholar 

  27. Jensen, F.V., Nielsen, T.D., Shenoy, P.P.: Sequential influence diagrams: a unified asymmetry framework. Int. J. Approx. Reason. 42(1), 101–118 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Howard, R.A., Matheson, J.E.: Influence diagrams. Decis. Anal. 2(3), 127–143 (2005)

    Google Scholar 

  29. Jensen, F.V., Vomlelova, M.: Unconstrained influence diagrams. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pp. 234–241 (2002)

  30. Zheng, H.Y., Deng, Y., Hu, Y.: Fuzzy evidential influence diagram and its evaluation algorithm. Knowl. Based Syst. 131, 28–45 (2017)

    Google Scholar 

  31. Lin, Y.H., Lin, C.C., Tyan, Y.Y.: An integrated quantitative risk analysis method for major construction accidents using fuzzy concepts and influence diagram. J. Mar. Sci. Technol. 19(4), 383–391 (2011)

    Google Scholar 

  32. Zhang, Z., Demsar, U., Wang, S.W., Virrantaus, K.: A spatial fuzzy influence diagram for modelling spatial objects’ dependencies: a case study on tree-related electric outages. Int. J. Geogr. Inf. Sci. 32(2), 349–366 (2017)

    Google Scholar 

  33. Kao, H.Y.: Diagnostic reasoning and medical decision-making with fuzzy influence diagrams. Comput. Methods Progr. Biomed. 90(1), 9–16 (2008)

    Google Scholar 

  34. Rodríguez-Muñiz, L.J., López-Dıaz, M., Gil, M.Á.: Solving influence diagrams with fuzzy chance and value nodes. Eur. J. Oper. Res. 167(2), 444–460 (2005)

    MATH  Google Scholar 

  35. Shan, J., Liu, Q.: Analysis of the impact of battlefield environment on military operation effectiveness using fuzzy influence diagram. Int. J. Fuzzy Syst. 21(6), 1882–1893 (2019)

    Google Scholar 

  36. Rotte, R., Schmidt, C.M.: On the production of victory: empirical determinants of battlefield success in modern war. Def. Peace Econ. 14(3), 175–192 (2003)

    Google Scholar 

  37. Brathwaite, K.J.H., Konaev, M.: War in the city: urban ethnic geography and combat effectiveness. J. Strateg. Stud. (2019). https://doi.org/10.1080/01402390.2019.1672159

    Article  Google Scholar 

  38. Kim, D., Moon, H., Park, D., Shin, H.: An efficient approximate solution for stochastic Lanchester models. J. Oper. Res. Soc. 68(11), 1470–1481 (2017)

    Google Scholar 

  39. Varghese, V., Desai, S.S., Nene, M.J.: Decision making in the battlefield-of-things. Wirel. Pers. Commun. 106(2), 423–438 (2019)

    Google Scholar 

  40. Dong, J., Wu, G.W., Yang, T.T., Jiang, Z.: Battlefield situation awareness and networking based on agent distributed computing. Phys. Commun. 33, 178–186 (2019)

    Google Scholar 

  41. Rajaraman, R.: Battlefield weapons and missile defense: worrisome developments in nuclear South Asia. Bull. At. Sci. 70(2), 68–74 (2014)

    Google Scholar 

  42. Goztepe, K.: Designing a battlefield fire support system using adaptive neuro-fuzzy inference system based model. Def. Sci. J. 63(5), 497–501 (2013)

    Google Scholar 

  43. Gue, K.R.: A dynamic distribution model for combat logistics. Comput. Oper. Res. 30(3), 367–381 (2003)

    MATH  Google Scholar 

  44. Aslan, M., Isik, H.: Green energy for the battlefield. Int. J. Green Energy 14(12), 1020–1026 (2017)

    Google Scholar 

  45. Knudson, G.B., Elliott, T.B., Brook, I., et al.: Nuclear, biological, and chemical combined injuries and countermeasures on the battlefield. Mil. Med. 167(2), 95–97 (2002)

    Google Scholar 

  46. Fu, Q., Jiang, H.L., Wang, X.M., Jing, W.B., Liu, X.Y.: The atmospheric environment simulation of virtual battlefield based on mat module. In: Icms2010: Proceedings of the Third International Conference on Modelling and Simulation, Vol 4: Modelling and Simulation in Biology, Ecology & Environment, pp. 309–313 (2010)

  47. Lin, K., Xia, F.Z., Li, C.S., Wang, D., Humar, I.: Emotion-aware system design for the battlefield environment. Inf. Fusion. 47, 102–110 (2019)

    Google Scholar 

  48. Nallisivan, M., Fyfe, A., Rodriguez, A.R.: Soft power building and China’s peaceful development. China Int. Stud. 4(4), 164–179 (2006)

    Google Scholar 

  49. Xia, J.Y., Fang, W.G.: The influence of military soft power on war based on Lanchester equation. In: Proceedings of the 49th International Conference on Computers & Industrial Engineering, pp. 50–61 (2019)

  50. Siegel, N.G., Madni A.M.: Digital battlefield: a behind-the-scenes look from a systems perspective. In: 2014 Conference on Systems Engineering Research, pp. 799–808 (2014)

  51. Zhang, Y.J., Pang, Z.B., Li, C.H., Xu, H.L., Zhai, X.F., Chu, S.L.: Application research of gaze tracking technology in battlefield situation visualization assessment. In: Proceedings of the 15th International Conference on Man-Machine-Environment System Engineering, vol. 356, pp. 399–406 (2015)

  52. Chuan, S., Yang, Z.: Structure design for prediction system of radar electromagnetic environment on dynamic battlefield. In: Proceedings of the 35th Chinese Control Conference 2016, pp. 9793–9798 (2016)

  53. Wang, H.T., Song, L.H., Zhang, G.M., Chen, H.: Timetable-aware opportunistic DTN routing for vehicular communications in battlefield environments. Future Gener. Comput. Syst. 83, 95–103 (2018)

    Google Scholar 

  54. Zhang, C.H., Wei, G.H.: Analysis of complicated electromagnetic environment and its effect in modern battlefield. In: Proceedings of the Second International Symposium on Test Automation & Instrumentation, pp. 149–152 (2008)

  55. Korzeniewski, K., Bochniak, A.: Medical support of military operations in Iraq and Afghanistan. Int. Marit. Health 62(1), 71–76 (2011)

    Google Scholar 

  56. Aebischer, D., Vatterott, J., Grimes, M., et al.: Bayesian networks for combat equipment diagnostics. Interfaces 47(1), 85–105 (2017)

    Google Scholar 

  57. Levy, B.S., Sidel, V.W.: Adverse health consequences of the Iraq War. The Lancet 381(9870), 949–958 (2013)

    Google Scholar 

  58. Cordesman, A.H.: The Iraq war: strategy, tactics, and military lessons[M]. CSIS (2003)

  59. Foley, L., Ball, L., Hurst, A., Davis, J., Blockley, D.: Fuzziness, incompleteness and randomness; classification of uncertainty in reservoir appraisal. Pet. Geosci. 3(3), 203–209 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, J., Pi, Z. & Fang, W. Predicting War Outcomes Based on a Fuzzy Influence Diagram. Int. J. Fuzzy Syst. 23, 984–1002 (2021). https://doi.org/10.1007/s40815-020-01026-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-01026-1

Keywords

Navigation