Skip to main content
Log in

Interval-Valued Intuitionistic Fuzzy Generalised Bonferroni Mean Operators for Multi-attribute Decision Making

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Interval-valued intuitionistic fuzzy set (IVIFS) is a potent tool to capture the vagueness and uncertainty of information. Archimedean copula and co-copula (ACC) are crucial implement utilized to generate operational rules of interval-valued intuitionistic fuzzy numbers (IVIFNs). Meanwhile, Bonferroni mean (BM) has a distinct merit that it can take into consideration the interconnection of diverse attributes. In the paper, generalized BM operators based on ACC are utilized to aggregate IVIFNs. Firstly, several novel operational rules based on ACC are proposed. Secondly, the interval-valued intuitionistic fuzzy copula BM (IVIFCBM) operator and the interval-valued intuitionistic fuzzy weighted copula BM (IVIFWCBM) operator are propounded. Moreover, several desired properties and particular instances of these operators are investigated in detail. Thirdly, a new methodology based upon the IVIFWCBM operator is presented to tackle multi-attribute decision making (MADM) problems under interval-valued intuitionistic fuzzy context. Ultimately, the efficacy of the proposed approach is substantiated through an empirical example and a comparison is implemented to display the predominance of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    MATH  Google Scholar 

  2. Huang, Q., Hu, B., Zhang, F.: Evolutionary optimized fuzzy reasoning with mined diagnostic patterns for classification of breast tumors in ultrasound. Inf. Sci. 502, 525–536 (2019)

    Google Scholar 

  3. Castillo, O., Amador-Angulo, L., Castro, J.R., Garcia-Valdez, M.: A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf. Sci. 354, 257–274 (2016)

    Google Scholar 

  4. Olivas, F., Valdez, F., Melin, P., Sombra, A., Castillo, O.: Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. Inf. Sci. 476, 159–175 (2019)

    Google Scholar 

  5. Li, Y., Sui, S., Tong, S.: Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics. IEEE Trans. Cybern. 47(2), 403–414 (2016)

    Google Scholar 

  6. Nguyen, A.T., Taniguchi, T., Eciolaza, L., Campos, V., Palhares, R., Sugeno, M.: Fuzzy control systems: past, present and future. IEEE Comput. Intell. Mag. 14(1), 56–68 (2019)

    Google Scholar 

  7. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17(4), 141 (1970)

    MathSciNet  MATH  Google Scholar 

  8. Kannan, D., Khodaverdi, R., Olfat, L., Jafarian, A., Diabat, A.: Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain. J. Clean. Prod. 47, 355–367 (2013)

    Google Scholar 

  9. Bhattacharya, A., Mohapatra, P., Kumar, V., Dey, P.K., Brady, M., Tiwari, M.K., Nudurupati, S.S.: Green supply chain performance measurement using fuzzy ANP-based balanced scorecard: a collaborative decision-making approach. Prod. Plan. Control 25(8), 698–714 (2014)

    Google Scholar 

  10. Kahraman, C., Onar, S.C., Oztaysi, B.: Fuzzy multicriteria decision-making: a literature review. Int. J. Comput. Intell. Syst. 8(4), 637–666 (2015)

    MATH  Google Scholar 

  11. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    MATH  Google Scholar 

  12. Wang, W., Liu, X.: Intuitionistic fuzzy information aggregation using Einstein operations. IEEE Trans. Fuzzy Syst. 20(5), 923–938 (2012)

    Google Scholar 

  13. Xia, M., Xu, Z., Zhu, B.: Some issues on intuitionistic fuzzy aggregation operators based on Archimedean t-conorm and t-norm. Knowl. Based Syst. 31, 78–88 (2012)

    Google Scholar 

  14. Garg, H.: Intuitionistic fuzzy Hamacher aggregation operators with entropy weight and their applications to multi-criteria decision-making problems. Iran. J. Sci. Technol. (2019). https://doi.org/10.1007/s40998-018-0167-0

    Article  Google Scholar 

  15. Wei, G.W.: 2-Tuple intuitionistic fuzzy linguistic aggregation operators in multiple attribute decision making. Iran. J. Fuzzy Syst. 16(4), 159–174 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Xu, Z., Zhao, N.: Information fusion for intuitionistic fuzzy decision making: an overview. Inf. Fusion 28, 10–23 (2016)

    Google Scholar 

  17. Zhang, C., Chen, C., Streimikiene, D., Balezentis, T.: Intuitionistic fuzzy MULTIMOORA approach for multi-criteria assessment of the energy storage technologies. Appl. Soft Comput. 79, 410–423 (2019)

    Google Scholar 

  18. Atalay, K.D., Can, G.F.: A new hybrid intuitionistic approach for new product selection. Soft Comput. 22(8), 2633–2640 (2018)

    Google Scholar 

  19. Garg, H.: Generalized intuitionistic fuzzy entropy-based approach for solving multi-attribute decision-making problems with unknown attribute weights. Proc. Natl. Acad. Sci. Sect. A 89(1), 129–139 (2019)

    MathSciNet  Google Scholar 

  20. Chen, S.M., Cheng, S.H., Chiou, C.H.: Fuzzy multiattribute group decision making based on intuitionistic fuzzy sets and evidential reasoning methodology. Inf. Fusion 27, 215–227 (2016)

    Google Scholar 

  21. Liu, Y., Liu, J., Qin, Y.: Dynamic intuitionistic fuzzy multiattribute decision making based on evidential reasoning and MDIFWG operator. J. Intell. Fuzzy Syst. 36, 2161–2172 (2019)

    Google Scholar 

  22. Yuan, J., Luo, X.: Approach for multi-attribute decision making based on novel intuitionistic fuzzy entropy and evidential reasoning. Comput. Ind. Eng. (2019). https://doi.org/10.1016/j.cie.2019.06.031

    Article  Google Scholar 

  23. Atanassov, K., Gargov, G.: Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31, 343–349 (1989)

    MathSciNet  MATH  Google Scholar 

  24. Liu, P.: Some Hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making. IEEE Trans. Fuzzy Syst. 22(1), 83–97 (2013)

    Google Scholar 

  25. Liu, P., & Wang, P., : Some interval-valued intuitionistic fuzzy Schweizer CSklar power aggregation operators and their application to supplier selection. Int. J. Syst. Sci. 49(6), 1188–1211 (2018)

    MathSciNet  Google Scholar 

  26. Kumar, K., Garg, H.: TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment. Comput. Appl. Math. 37(2), 1319–1329 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Abdullah, L., Zulkifli, N., Liao, H., Herrera-Viedma, E., Al-Barakati, A.: An interval-valued intuitionistic fuzzy DEMATEL method combined with Choquet integral for sustainable solid waste management. Eng. Appl. Artif. Intell. 82, 207–215 (2019)

    Google Scholar 

  28. Ye, J.: Generalized Dice measures for multiple attribute decision making under intuitionistic and interval-valued intuitionistic fuzzy environments. Neural Comput. Appl. 30(12), 3623–3632 (2018)

    Google Scholar 

  29. Nguyen, H.: A generalized p-norm knowledge-based score function for interval-valued intuitionistic fuzzy set in decision making. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/mis.2019.2938441

    Article  Google Scholar 

  30. Xu, Z.S.: Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making. Control Decision 22(2), 215–219 (2007)

    Google Scholar 

  31. Xu, Z., Chen, Q.: A multi-criteria decision making procedure based on interval-valued intuitionistic fuzzy Bonferroni means. J. Syst. Sci. Syst. Eng. 20(2), 217–228 (2011)

    Google Scholar 

  32. Talukdar, P., Dutta, P.: A new ranking approach for interval valued intuitionistic fuzzy sets and its application in decision making. Int. J. Fuzzy Syst. Appl. 8(2), 110–125 (2019)

    Google Scholar 

  33. Meng, F., Tang, J., Wang, P., Chen, X.: A programming-based algorithm for interval-valued intuitionistic fuzzy group decision making. Knowl. Based Syst. 144, 122–143 (2018)

    Google Scholar 

  34. Hao, Y., Chen, X.: Study on the ranking problems in multiple attribute decision making based on interval-valued intuitionistic fuzzy numbers. Int. J. Intell. Syst. 33(3), 560–572 (2018)

    Google Scholar 

  35. Garg, H., Rani, D.: Complex interval-valued intuitionistic fuzzy sets and their aggregation operators. Fund. Inf. 164(1), 61–101 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Liu, Z., Teng, F., Liu, P., Ge, Q.: Interval-valued intuitionistic fuzzy power Maclaurin symmetric mean aggregation operators and their application to multiple attribute group decision-making. Int. J. Uncertain. Quant. 8, 3 (2018)

    MathSciNet  Google Scholar 

  37. Liu, Y., Liu, J., Qin, Y.: Pythagorean fuzzy linguistic Muirhead mean operators and their applications to multiattribute decision-making. Int. J. Intell. Syst. (2019). https://doi.org/10.1002/int.22212

    Article  Google Scholar 

  38. Sklar, M.: Fonctions de repartition an dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 8, 229–231 (1959)

    MATH  Google Scholar 

  39. Jouini, M.N., Clemen, R.T.: Copula models for aggregating expert opinions. Oper. Res. 44(3), 444–457 (1996)

    MATH  Google Scholar 

  40. Nelsen, R.B.: An Introduction to Copulas. Springer, New York (2007)

    MATH  Google Scholar 

  41. Bacigál, T., Mesiar, R., Najjari, V.: Generators of copulas and aggregation. Inf. Sci. 306, 81–87 (2015)

    MATH  Google Scholar 

  42. Tao, Z., Han, B., Chen, H.: On intuitionistic fuzzy copula aggregation operators in multiple-attribute decision making. Cogn. Comput. 10(4), 610–624 (2018)

    Google Scholar 

  43. Tao, Z., Han, B., Zhou, L., Chen, H.: The novel computational model of unbalanced linguistic variables based on Archimedean Copula. Int. J. Uncertain. Fuzz. Knowl. Based Syst. 26(04), 601–631 (2018)

    MATH  Google Scholar 

  44. Chen, T., He, S.S., Wang, J.Q., Li, L., Luo, H.: Novel operations for linguistic neutrosophic sets on the basis of Archimedean copulas and co-copulas and their application in multi-criteria decision-making problems. J. Intell. Fuzzy Syst. 37(2), 2887–2912 (2019)

    Google Scholar 

  45. Han, B., Tao, Z., Chen, H., Zhou, L., Liu, J.: A new computational model based on Archimedean copula for probabilistic unbalanced linguistic term set and its application to multiple attribute group decision making. Comput. Ind. Eng 140, 106264 (2020)

    Google Scholar 

  46. Rong, Y., Pei, Z., Liu, Y.: Generalized single-valued neutrosophic power aggregation operators based on Archimedean copula and co-copula and their application to multi-attribute decision-making. IEEE Access 8, 35496–35519 (2020)

    Google Scholar 

  47. Yager, R.R.: The power average operator. IEEE Trans. Syst. Man Cybern. A 31(6), 724–731 (2001)

    Google Scholar 

  48. Yager, R.R.: Prioritized aggregation operators. Int. J. Approx. Reason. 48(1), 263–274 (2008)

    MathSciNet  MATH  Google Scholar 

  49. Xu, Z., Yager, R.R.: Intuitionistic fuzzy Bonferroni means. IEEE Trans. Syst. Man Cybern. B 41(2), 568–578 (2010)

    Google Scholar 

  50. Cherubini, U., Luciano, E., Vecchiato, W.: Copula Methods in Finance. Wiley, New York (2004)

    MATH  Google Scholar 

  51. Kong, M., Pei, Z., Ren, F., Hao, F.: New operations on generalized hesitant fuzzy linguistic term sets for linguistic decision making. Int. J. Fuzzy Syst. 21(1), 243–262 (2019)

    MathSciNet  Google Scholar 

  52. Pei, Z., Yi, L.: A note on operations of hesitant fuzzy sets. Int. J. Comput. Intell. Syst. 8(2), 226–239 (2015)

    Google Scholar 

  53. Rong, Y., Pei, Z., Liu, Y.: Hesitant fuzzy linguistic Hamy mean aggregation operators and their application to linguistic multiple attribute decision-making. Math. Problems Eng. (2020). https://doi.org/10.1155/2020/3262618

    Article  MathSciNet  Google Scholar 

  54. Rong, Y., Liu, Y., Pei, Z.: Complex q-rung orthopair fuzzy 2-tuple linguistic Maclaurin symmetric mean operators and its application to emergency program selection. Int. J. Intell. Syst. 35(11), 1749–1790 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 61372187, the Scientific and Technological Project of Sichuan Province under Grant 2019YFG0100. the Sichuan Province Youth Science and Technology Innovation Team under Grant 2019JDTD0015, the Application Basic Research Plan Project of Sichuan Province under Grant 2017JY0199, the Scientific Research Project of Department of Education of Sichuan Province under Grant 18ZA0273 and Grant 15TD0027, the Scientific Research Project of Neijiang Normal University under Grant 18TD08, the Application Basic Research of Sichuan Province under Grant 2021JY0108, the Innovation Fund of Postgraduate Xihua University under Grant YCJJ2020028.                                                                                                                                                                                                                        The author would like to thank the editors and anonymous reviewers for their constructive comments and suggestions, which will help us to better improve this paper. The author (Yuan Rong) would like to special thank the radio management technology research center of Xihua University for its great support during the preparation of the paper. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Pei.

Appendices

Appendix 1

1.1 The Proof of Theorem 10.

Theorem 10

Assume \(\mathscr {\tilde{Q}}_{k}=\left( [\alpha _k, \beta _k], [\gamma _k, \delta _k]\right) (k=1, 2, \ldots , n)\) be a family of IVIFNs, and \(g, h \ge 0\). Then the fusion result from Eq (13) is also an IVIFN, and it can be acquired from

$$\begin{aligned}&IVIFCBM^{g, h} \left( \mathscr {\tilde{Q}}, \mathscr {\tilde{Q}}, \ldots , \mathscr {\tilde{Q}} \right) \\&\quad =\left( \begin{array}{cccc}\left[ \xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _k\right) +h\xi \left( \alpha _j\right) \right) \right) \right) \right) \right) \right) , \right. \\ \left. \xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _k\right) +h\xi \left( \beta _j\right) \right) \right) \right) \right) \right) \right) \right] ,\\ \left[ 1-\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\xi \left( 1-\xi ^{-1}\left( \begin{array}{ccc}g\xi \left( 1-\gamma _k\right) \\ +h\xi \left( 1-\gamma _j\right) \end{array}\right) \right) \right) \right) \right) \right) , \right. \\ \left. 1-\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\xi \left( 1-\xi ^{-1}\left( \begin{array}{ccc}g\xi \left( 1-\delta _k\right) \\ +h\xi \left( 1-\delta _j\right) \end{array}\right) \right) \right) \right) \right) \right) \right] \end{array}\right) . \end{aligned}$$

Proof

Since

$$\begin{aligned}&\mathscr {\tilde{Q}}_{i}^{g}= \left( \begin{array}{cccc} \left[ \xi ^{-1}\left( g\xi \left( \alpha _k\right) \right) , \xi ^{-1}\left( g\xi \left( \beta _k\right) \right) \right] , \\ \left[ 1-\xi ^{-1}\left( g\xi \left( 1-\gamma _k\right) \right) , 1-\xi ^{-1}\left( g\xi \left( 1-\delta _k\right) \right) \right] \end{array}\right) ,\\&\mathscr {\tilde{Q}}_{j}^{h}= \left( \begin{array}{cccc} \left[ \xi ^{-1}\left( h\xi \left( \alpha _j\right) \right) , \xi ^{-1}\left( h\xi \left( \beta _j\right) \right) \right] , \\ \left[ 1-\xi ^{-1}\left( h\xi \left( 1-\gamma _j\right) \right) , 1-\xi ^{-1}\left( h\xi \left( 1-\delta _j\right) \right) \right] \end{array}\right) . \end{aligned}$$

Then

$$\begin{aligned} \mathscr {\tilde{Q}}_{i}^{g} \otimes \mathscr {\tilde{Q}}_{j}^{h}&\,=\,\left( \begin{array}{cccc}\left[ \xi ^{-1}\left( \xi \left( \xi ^{-1}\left( g\xi \left( \alpha _k\right) \right) \right) +\xi \left( \xi ^{-1}\left( h\xi \left( \alpha _j\right) \right) \right) \right) ,\right. \\ \left. \xi ^{-1}\left( \xi \left( \xi ^{-1}\left( g\xi \left( \beta _k\right) \right) \right) +\xi \left( \xi ^{-1}\left( g\xi \left( \beta _j\right) \right) \right) \right) \right] , \\ \left[ 1-\xi ^{-1}\left( \xi \left( \xi ^{-1}\left( g\xi \left( 1-\gamma _k\right) \right) \right) +\xi \left( \xi ^{-1}\left( h\xi \left( 1-\gamma _j\right) \right) \right) \right) , \right. \\ \left. 1-\xi ^{-1}\left( \xi \left( \xi ^{-1}\left( g\xi \left( 1-\delta _k\right) \right) \right) +\xi \left( \xi ^{-1}\left( h\xi \left( 1-\delta _j\right) \right) \right) \right) \right] \end{array}\right) ;\\&\,=\,\left( \begin{array}{cccc}\left[ \xi ^{-1}\left( g\xi \left( \alpha _k\right) +h\xi \left( \alpha _j\right) \right) , \xi ^{-1}\left( g\xi \left( \beta _k\right) +\xi \left( \beta _{j}\right) \right) \right] ,\\ \left[ 1-\xi ^{-1}\left( g\xi \left( 1-\gamma _k\right) +h\xi \left( 1-\gamma _j\right) \right) , \right. \\ \left. 1-\xi ^{-1}\left( g\xi \left( 1-\delta _k\right) +h\xi \left( 1-\delta _j\right) \right) \right] \end{array}\right) , \end{aligned}$$

and

$$\begin{aligned}&\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\mathscr {\tilde{Q}}_{k}^{g} \otimes \mathscr {\tilde{Q}}_{j}^{h} \\&\quad =\left( \begin{array}{cccc} \left[ 1-\xi ^{-1}\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _k\right) +h\xi \left( \alpha _j\right) \right) \right) \right) , \right. \\ \left. 1-\xi ^{-1}\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _k\right) +h\xi \left( \beta _j\right) \right) \right) \right) \right] ,\\ \left[ \xi ^{-1}\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\xi \left( 1-\xi ^{-1}\left( g\xi \left( 1-\gamma _k\right) +h\xi \left( 1-\gamma _j\right) \right) \right) \right) , \right. \\ \left. \xi ^{-1}\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\xi \left( 1-\xi ^{-1}\left( g\xi \left( 1-\delta _k \right) +h\xi \left( 1-\delta _j\right) \right) \right) \right) \right] \end{array}\right) . \end{aligned}$$

Furthermore

$$\begin{aligned}&\frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\mathscr {\tilde{Q}}_{k}^{g} \otimes \mathscr {\tilde{Q}}_{j}^{h} \\&\quad =\left( \begin{array}{cccccc} \left[ 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\xi \left( \xi ^{-1}\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _k\right) +h\xi \left( \alpha _j\right) \right) \right) \right) \right) \right) ,\right. \\ \left. 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\xi \left( \xi ^{-1}\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _k\right) +h\xi \left( \beta _j\right) \right) \right) \right) \right) \right) \right] ,\\ \left[ \xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\xi \left( \xi ^{-1}\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\xi \left( 1-\xi ^{-1}\left( \begin{array}{ccc}g\xi \left( 1-\gamma _k\right) \\ +h\xi \left( 1-\gamma _j\right) \end{array}\right) \right) \right) \right) \right) ,\right. \\ \left. \xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\xi \left( \xi ^{-1}\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\xi \left( 1-\xi ^{-1}\left( \begin{array}{ccc}g\xi \left( 1-\delta _k\right) \\ +h\xi \left( 1-\delta _j\right) \end{array}\right) \right) \right) \right) \right) \right] \end{array}\right) .\\&\quad =\left( \begin{array}{ccc} \left[ 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _k\right) +h\xi \left( \alpha _j\right) \right) \right) \right) \right) ,\right. \\ \left. 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _k\right) +h\xi \left( \beta _j\right) \right) \right) \right) \right) \right] ,\\ \left[ \xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\xi \left( 1-\xi ^{-1}\left( g\xi \left( 1-\gamma _k\right) +h\xi \left( 1-\gamma _j\right) \right) \right) \right) \right) ,\right. \\ \left. \xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\xi \left( 1-\xi ^{-1}\left( g\xi \left( 1-\delta _k\right) +h\xi \left( 1-\delta _j\right) \right) \right) \right) \right) \right] \end{array}\right) . \end{aligned}$$

Accordingly

$$\begin{aligned}&\left( { {\frac{1}{n\left( { {n-1} }\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} {\mathscr {\tilde{Q}}_{k}^{g} \otimes \mathscr {\tilde{Q}}_{j}^{h}}}}\right) ^{\frac{1}{g+h}} \\&\quad =\left( \begin{array}{cccccc} \left[ \xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( \mathfrak {a} \right) \right) \right) \right) \right) , \right. \\ \left. \xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { i,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( \mathfrak {b} \right) \right) \right) \right) \right) \right] ,\\ \left[ 1-\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\xi \left( \mathfrak {c} \right) \right) \right) \right) \right) \right. \\ \left. 1-\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1 }\\ {k\ne j} \end{array}}^{n}\xi \left( \mathfrak {d} \right) \right) \right) \right) \right) \right] \end{array}\right) . \end{aligned}$$

Where

$$\begin{aligned}&\mathfrak {a}= 1-\xi ^{-1}\left( g\xi \left( \alpha _k\right) +h\xi \left( \alpha _j\right) \right) ;\\&\mathfrak {b}=1-\xi ^{-1}\left( g\xi \left( \beta _k\right) +h\xi \left( \beta _j\right) \right) ;\\&\mathfrak {c}=1-\xi ^{-1}\left( g\xi \left( 1-\gamma _k\right) +h\xi \left( 1-\gamma _j\right) \right) ;\\&\mathfrak {d}=1-\xi ^{-1}\left( g\xi \left( 1-\delta _k\right) +h\xi \left( 1-\delta _j\right) \right) . \end{aligned}$$

Accordingly, we can attain that Eq (13)is correct. \(\square\)

Appendix 2

1.1 The Proof of Theorem 11.

Theorem 11

(Idempotency) Assume \(\{\mathscr {\tilde{Q}}_{1}, \mathscr {\tilde{Q}}_{2}, \ldots , \mathscr {\tilde{Q}}_{n}\}\) be a family of IVIFNs, and \(g, h \ge 0\). If all \(\mathscr {\tilde{Q}}_{k}\) are equal \(\mathscr {\tilde{Q}}\), i.e., \(\mathscr {\tilde{Q}}_{k}=\mathscr {\tilde{Q}}=\langle [\alpha , \beta ], [\gamma , \delta ]\rangle (k=1, 2, \ldots , n)\), then

$$\begin{aligned} IVIFCBM^{g, h} \left( \mathscr {\tilde{Q}}_{1}, \mathscr {\tilde{Q}}_{2}, \ldots , \mathscr {\tilde{Q}}_{n} \right) =\mathscr {\tilde{Q}}. \end{aligned}$$
(47)

Proof

Since \(\mathscr {\tilde{Q}}_{k}=\mathscr {\tilde{Q}}=\langle [\alpha , \beta ], [\gamma , \delta ]\rangle\)

$$\begin{aligned}&IVIFCBM^{g, h} \left( \mathscr {\tilde{Q}}, \mathscr {\tilde{Q}}, \ldots , \mathscr {\tilde{Q}} \right) \\&\quad =\left( \begin{array}{cccc}\left[ \xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1 }\\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _k\right) +h\xi \left( \alpha _j\right) \right) \right) \right) \right) \right) \right) , \right. \\ \left. \xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _k\right) +h\xi \left( \beta _j\right) \right) \right) \right) \right) \right) \right) \right] ,\\ \left[ 1-\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\xi \left( 1-\xi ^{-1}\left( \begin{array}{ccc}g\xi \left( 1-\gamma _k\right) \\ +h\xi \left( 1-\gamma _j\right) \end{array}\right) \right) \right) \right) \right) \right) , \right. \\ \left. 1-\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\xi \left( 1-\xi ^{-1}\left( \begin{array}{ccc}g\xi \left( 1-\delta _k\right) \\ +h\xi \left( 1-\delta _j\right) \end{array}\right) \right) \right) \right) \right) \right) \right] \end{array}\right) .\\&\quad =\left( \begin{array}{cccc} \left[ \xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( \left( g+h\right) \xi \left( \alpha \right) \right) \right) \right) \right) \right) \right) , \right. \\ \left. \xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( \left( g+h\right) \xi \left( \beta \right) \right) \right) \right) \right) \right) \right) \right] ,\\ \left[ 1-\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\xi \left( 1-\xi ^{-1}\left( \left( g+h\right) \xi \left( 1-\gamma \right) \right) \right) \right) \right) \right) \right) , \right. \\ \left. 1-\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\xi \left( 1-\xi ^{-1}\left( \left( g+h\right) \xi \left( 1-\delta \right) \right) \right) \right) \right) \right) \right) \right] \end{array}\right) .\\&\quad =\left( \begin{array}{cccc} \left[ \xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( n\left( n-1\right) \xi \left( 1-\xi ^{-1}\left( \left( g+h\right) \xi \left( \alpha \right) \right) \right) \right) \right) \right) \right) , \right. \\ \left. \xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( n\left( n-1\right) \xi \left( 1-\xi ^{-1}\left( \left( g+h\right) \xi \left( \beta \right) \right) \right) \right) \right) \right) \right) \right] ,\\ \left[ 1-\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( n\left( n-1\right) \xi \left( 1-\xi ^{-1}\left( \left( g+h\right) \xi \left( 1-\gamma \right) \right) \right) \right) \right) \right) \right) , \right. \\ \left. 1-\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\left( n\left( n-1\right) \xi \left( 1-\xi ^{-1}\left( \left( g+h\right) \xi \left( 1-\delta \right) \right) \right) \right) \right) \right) \right) \right] \end{array}\right) \\&\quad = \left( \begin{array}{cccc} \left[ \xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\left( 1-\xi ^{-1}\left( \left( g+h\right) \xi \left( \alpha \right) \right) \right) \right) \right) , \right. \\ \left. \xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\left( 1-\xi ^{-1}\left( \left( g+h\right) \xi \left( \beta \right) \right) \right) \right) \right) \right] ,\\ \left[ 1-\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\left( 1-\xi ^{-1}\left( \left( g+h\right) \xi \left( 1-\gamma \right) \right) \right) \right) \right) , \right. \\ \left. 1-\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\left( 1-\xi ^{-1}\left( \left( g+h\right) \xi \left( 1-\delta \right) \right) \right) \right) \right) \right] \end{array}\right) .\\&\quad = \left( \begin{array}{cccc} \left[ \xi ^{-1}\left( \frac{1}{g+h}\left( g+h\right) \xi \left( \alpha \right) \right) , \right. \\ \left. \xi ^{-1}\left( \frac{1}{g+h}\left( g+h\right) \xi \left( \beta \right) \right) \right] , \\ \left[ 1-\xi ^{-1}\left( \frac{1}{g+h}\left( g+h\right) \xi \left( 1-\gamma \right) \right) , \right. \\ \left. 1-\xi ^{-1}\left( \frac{1}{g+h}\left( g+h\right) \xi \left( 1-\delta \right) \right) \right] \end{array}\right) . =\left( \begin{array}{cccc} \left[ \xi ^{-1}\xi \left( \alpha \right) , \right. \\ \left. \xi ^{-1}\xi \left( \beta \right) \right] ,\\ \left[ 1-\xi ^{-1}\left( \xi \left( 1-\gamma \right) \right) , \right. \\ \left. 1-\xi ^{-1}\left( \xi \left( 1-\delta \right) \right) \right] \end{array}\right) \\&\quad =\left( [\alpha , \beta ], [\gamma , \delta ]\right) \end{aligned}$$

Accordingly, the idempotency of IVIFCBM operator is proved. \(\square\)

Appendix 3

The Proof of Theorem 12.

Theorem 12

(Monotonicity) Assume \(\{\mathscr {\tilde{Q}}_{1}, \mathscr {\tilde{Q}}_{2}, \ldots , \mathscr {\tilde{Q}}_{n}\}\) \(\{\mathscr {\tilde{Q}}_{1}^{'}, \mathscr {\tilde{Q}}_{2}^{'}, \ldots , \mathscr {\tilde{Q}}_{n}^{'}\}\) be two families of IVIFNs and \(h, g \ge 0\). If \(\{\mathscr {\tilde{Q}}_{k}=\langle [\alpha _{k}, \beta _{k}], [\gamma _{k}, \delta _{k}]\rangle\), \(\{\mathscr {\tilde{Q}}_{k}^{'}=\langle [\alpha _{k}^{'}, \beta _{k}^{'}], [\gamma _{k}^{'}, \delta _{k}^{'}]\rangle\), \(\alpha _{k} \ge \alpha _{k}^{'}, \beta _{k}\ge \beta _{k}^{'}, \gamma _{k}\le \gamma _{k}^{'}\) and \(\delta _{k} \le \delta _{k}^{'} (k=1, 2, \ldots , n)\),

$$\begin{aligned}&IVIFCBM^{g, h} \left( \mathscr {\tilde{Q}}_{1}, \mathscr {\tilde{Q}}_{2}, \ldots , \mathscr {\tilde{Q}}_{n} \right) \nonumber \\&\quad \ge IVIFCBM^{g, h} \left( \mathscr {\tilde{Q}}_{1}^{'}, \mathscr {\tilde{Q}}_{2}^{'}, \ldots , \mathscr {\tilde{Q}}_{n}^{'}\right) \end{aligned}$$
(48)

Proof

Let \(IVIFCBM^{g, h} \left( \mathscr {\tilde{Q}}_{1}, \mathscr {\tilde{Q}}_{2}, \ldots , \mathscr {\tilde{Q}}_{n} \right) =\langle [\alpha , \beta ], [\gamma , \delta ]\rangle\), \(IVIFCBM^{g, h} \left( \mathscr {\tilde{Q}}_{1}^{'}, \mathscr {\tilde{Q}}_{2}^{'}, \ldots , \mathscr {\tilde{Q}}_{n}^{'} \right) =\langle [\alpha ^{'}, \beta ^{'}], [\gamma ^{'}, \delta ^{'}]\rangle\), where

$$\begin{aligned}&\alpha =\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _k\right) +h\xi \left( \alpha _j\right) \right) \right) \right) }{n\left( n-1\right) }\right) \right) \right) ,\\&\alpha ^{'}=\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _{k}^{'}\right) +h\xi \left( \alpha _{j}^{'}\right) \right) \right) \right) }{n\left( n-1\right) }\right) \right) \right) ,\\&\beta =\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _k\right) +h\xi \left( \beta _j\right) \right) \right) \right) }{n\left( n-1\right) }\right) \right) \right) ,\\&\beta ^{'}=\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{\left( \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _{k}^{'}\right) +h\xi \left( \beta _{j}^{'}\right) \right) \right) \right) }{n\left( n-1\right) }\right) \right) \right) . \end{aligned}$$

Since \(\alpha _{k} \ge \alpha _{k}^{'}, \beta _{k}\ge \beta _{k}^{'}\), \(\xi (t)\) and \(\xi ^{-1}(t)\) are decreasing functions. \(1-\xi (t)\) and \(1-\xi ^{-1}(t)\) are increasing functions. Then we have

$$\begin{aligned} g\xi \left( \alpha _i\right) +h\xi \left( \alpha _j\right) \le g\xi \left( \alpha _{i}^{'}\right) +h\xi \left( \alpha _{j}^{'}\right) ,\\ g\xi \left( \beta _i\right) +h\xi \left( \beta _j\right) \le g\xi \left( \beta _{i}^{'}\right) +h\xi \left( \beta _{j}^{'}\right) , \end{aligned}$$

and

$$\begin{aligned} 1-\xi ^{-1}\left( g\xi \left( \alpha _k\right) +h\xi \left( \alpha _j\right) \right) \ge 1-\xi ^{-1}\left( g\xi \left( \alpha _{k}^{'}\right) +h\xi \left( \alpha _{j}^{'}\right) \right) , \\ 1-\xi ^{-1}\left( g\xi \left( \beta _k\right) +h\xi \left( \beta _j\right) \right) \ge 1-\xi ^{-1}\left( g\xi \left( \beta _{k}^{'}\right) +h\xi \left( \beta _{j}^{'}\right) \right) . \end{aligned}$$

Then

$$\begin{aligned}&\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _k\right) +h\xi \left( \alpha _j\right) \right) \right) \\&\quad \le \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _{k}^{'}\right) +h\xi \left( \alpha _{j}^{'}\right) \right) \right) ,\\&\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _k\right) +h\xi \left( \beta _j\right) \right) \right) \\&\quad \le \sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _{k}^{'}\right) +h\xi \left( \beta _{j}^{'}\right) \right) \right) , \end{aligned}$$

and

$$\begin{aligned}&\frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _k\right) +h\xi \left( \alpha _j\right) \right) \right) \\&\quad \le \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _{k}^{'}\right) +h\xi \left( \alpha _{j}^{'}\right) \right) \right) ,\\&\frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _k\right) +h\xi \left( \beta _j\right) \right) \right) \\&\quad \le \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} {k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _{k}^{'}\right) +h\xi \left( \beta _{j}^{'}\right) \right) \right) . \end{aligned}$$

Furthermore

$$\begin{aligned}&1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1 }\\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _k\right) +h\xi \left( \alpha _j\right) \right) \right) \right) \\&\quad \le 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _{k}^{'}\right) +h\xi \left( \alpha _{j}^{'}\right) \right) \right) \right) ,\\&1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _k\right) +h\xi \left( \beta _j\right) \right) \right) \right) \\&\quad \le 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _{k}^{'}\right) +h\xi \left( \beta _{j}^{'}\right) \right) \right) \right) . \end{aligned}$$

and

$$\begin{aligned}&\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _k\right) +h\xi \left( \alpha _j\right) \right) \right) \right) \right) \\ \ge&\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _{k}^{'}\right) +h\xi \left( \alpha _{j}^{'}\right) \right) \right) \right) \right) \\&\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _k\right) +h\xi \left( \beta _j\right) \right) \right) \right) \right) \\ \ge&\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _{k}^{'}\right) +h\xi \left( \beta _{j}^{'}\right) \right) \right) \right) \right) . \end{aligned}$$

Moreover

$$\begin{aligned}&\frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _k\right) +h\xi \left( \alpha _j\right) \right) \right) \right) \right) \\&\quad \ge \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _{k}^{'}\right) +h\xi \left( \alpha _{j}^{'}\right) \right) \right) \right) \right) \\&\frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _k\right) +h\xi \left( \beta _j\right) \right) \right) \right) \right) \\&\quad \ge \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _{k}^{'}\right) +h\xi \left( \beta _{j}^{'}\right) \right) \right) \right) \right) . \end{aligned}$$

Hence

$$\begin{aligned}&\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _k\right) +h\xi \left( \alpha _j\right) \right) \right) \right) \right) \right) \\&\quad \ge \xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \alpha _{k}^{'}\right) +h\xi \left( \alpha _{j}^{'}\right) \right) \right) \right) \right) \right) \\&\xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _k\right) +h\xi \left( \beta _j\right) \right) \right) \right) \right) \right) \\&\quad \ge \xi ^{-1}\left( \frac{1}{g+h}\xi \left( 1-\xi ^{-1}\left( \frac{1}{n\left( n-1\right) }\sum \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n} \xi \left( 1-\xi ^{-1}\left( g\xi \left( \beta _{k}^{'}\right) +h\xi \left( \beta _{j}^{'}\right) \right) \right) \right) \right) \right) . \end{aligned}$$

i.e., \(\alpha \ge \alpha ^{'}, \beta \ge \beta ^{'}\).

Analogously, we also acquire \(\gamma \le \gamma ^{'}, \delta \le \delta ^{'}\).

Besides, the following three particular situations are explored:

  1. (1)

    If \(\alpha \ge \alpha ^{'}, \beta \ge \beta ^{'}\) and \(\gamma \le \gamma ^{'}, \delta \le \delta ^{'}\), then

    $$\begin{aligned}&IVIFCBM^{g, h} \left( \mathscr {\tilde{Q}}_{1}, \mathscr {\tilde{Q}}_{2}, \ldots , \mathscr {\tilde{Q}}_{n} \right) \\&\quad > IVIFCBM^{g, h} \left( \mathscr {\tilde{Q}}_{1}^{'}, \mathscr {\tilde{Q}}_{2}^{'}, \ldots , \mathscr {\tilde{Q}}_{n}^{'}\right) ; \end{aligned}$$
  2. (2)

    If \(\alpha = \alpha ^{'}, \beta = \beta ^{'}\) and \(\gamma \le \gamma ^{'}, \delta \le \delta ^{'}\), then

    $$\begin{aligned}&IVIFCBM^{g, h} \left( \mathscr {\tilde{Q}}_{1}, \mathscr {\tilde{Q}}_{2}, \ldots , \mathscr {\tilde{Q}}_{n} \right) \\&\quad > IVIFCBM^{g, h} \left( \mathscr {\tilde{Q}}_{1}^{'}, \mathscr {\tilde{Q}}_{2}^{'}, \ldots , \mathscr {\tilde{Q}}_{n}^{'}\right) ; \end{aligned}$$
  3. (3)

    If \(\alpha = \alpha ^{'}, \beta = \beta ^{'}\) and \(\gamma = \gamma ^{'}, \delta = \delta ^{'}\), then

    $$\begin{aligned}&IVIFCBM^{g, h} \left( \mathscr {\tilde{Q}}_{1}, \mathscr {\tilde{Q}}_{2}, \ldots , \mathscr {\tilde{Q}}_{n} \right) \\&\quad = IVIFCBM^{g, h} \left( \mathscr {\tilde{Q}}_{1}^{'}, \mathscr {\tilde{Q}}_{2}^{'}, \ldots , \mathscr {\tilde{Q}}_{n}^{'}\right) . \end{aligned}$$

    Accordingly, the monotonicity of IVIFCBM operator is proved.

\(\square\)

Appendix 4

Case 7: When \(\xi (t)=\ln \left( \frac{e^{-\varsigma t}-1}{e^{-\varsigma }-1}\right) (\varsigma \ne 0)\), we have

$$\begin{aligned}&IVIFCBM^{g, h} \left( \mathscr {\tilde{Q}}_{1}, \mathscr {\tilde{Q}}_{2}, \ldots , \mathscr {\tilde{Q}}_{n} \right) \nonumber \\&\quad =\left( \begin{array}{cccc} \left[ -\frac{1}{\varsigma }\ln \left( u_{4}\left( e^{-\varsigma }-1\right) +1\right) , -\frac{1}{\varsigma }\ln \left( v_{3}\left( e^{-\varsigma }-1\right) +1\right) \right] , \\ \left[ 1+\frac{1}{\varsigma }\ln \left( p_{3}\left( e^{-\varsigma }-1\right) +1\right) , 1+\frac{1}{\varsigma }\ln \left( q_{3}\left( e^{-\varsigma }-1\right) +1\right) \right] \end{array}\right) , \end{aligned}$$

where

$$\begin{aligned}&u_{3}=\left( \frac{e^{-\varsigma \left( 1+\frac{1}{\varsigma }\ln \left( u_{3}{'}\left( e^{-\varsigma }-1\right) +1\right) \right) }-1}{e^{-\varsigma }-1}\right) ^{\frac{1}{g+h}},\\&v_{3}=\left( \frac{e^{-\varsigma \left( 1+\frac{1}{\varsigma }\ln \left( v_{3}{'}\left( e^{-\varsigma }-1\right) +1\right) \right) }-1}{e^{-\varsigma }-1}\right) ^{\frac{1}{g+h}},\\&p_{3}=\left( \frac{e^{-\varsigma \left( 1+\frac{1}{\varsigma }\ln \left( p_{3}{'}\left( e^{-\varsigma }-1\right) +1\right) \right) }-1}{e^{-\varsigma }-1}\right) ^{\frac{1}{g+h}},\\&q_{3}=\left( \frac{e^{-\varsigma \left( 1+\frac{1}{\varsigma }\ln \left( q_{3}{'}\left( e^{-\varsigma }-1\right) +1\right) \right) }-1}{e^{-\varsigma }-1}\right) ^{\frac{1}{g+h}},\\&u_{3}{'}=\left( \prod \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\left( \frac{e^{-\varsigma \left( 1+\frac{1}{\varsigma }\ln \left( u_{3}{''}\left( e^{-\varsigma }-1\right) +1\right) \right) }-1}{e^{-\varsigma }-1}\right) \right) ^{\frac{1}{n\left( n-1\right) }},\\&v_{3}{'}=\left( \prod \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\left( \frac{e^{-\varsigma \left( 1+\frac{1}{\varsigma }\ln \left( v_{3}{''}\left( e^{-\varsigma }-1\right) +1\right) \right) }-1}{e^{-\varsigma }-1}\right) \right) ^{\frac{1}{n\left( n-1\right) }},\\&p_{3}{'}=\left( \prod \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\left( \frac{e^{-\varsigma \left( 1+\frac{1}{\varsigma }\ln \left( p_{3}{''}\left( e^{-\varsigma }-1\right) +1\right) \right) }-1}{e^{-\varsigma }-1}\right) \right) ^{\frac{1}{n\left( n-1\right) }},\\&q_{3}{'}=\left( \prod \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\left( \frac{e^{-\varsigma \left( 1+\frac{1}{\varsigma }\ln \left( q_{3}{''}\left( e^{-\varsigma }-1\right) +1\right) \right) }-1}{e^{-\varsigma }-1}\right) \right) ^{\frac{1}{n\left( n-1\right) }},\\&u_{3}{''}=\left( \frac{e^{-\varsigma \alpha _{k}}-1}{e^{-\varsigma }-1}\right) ^{g}\left( \frac{e^{-\varsigma \alpha _{j}}-1}{e^{-\varsigma }-1}\right) ^{h},\\&p_{3}{''}=\left( \frac{e^{-\varsigma \left( 1-\gamma _{k}\right) }-1}{e^{-\varsigma }-1}\right) ^{g}\left( \frac{e^{-\varsigma \left( 1-\gamma _{j}\right) }-1}{e^{-\varsigma }-1}\right) ^{h},\\&v_{3}{''}=\left( \frac{e^{-\varsigma \beta _{k}}-1}{e^{-\varsigma }-1}\right) ^{g}\left( \frac{e^{-\varsigma \beta _{j}}-1}{e^{-\varsigma }-1}\right) ^{h},\\&q_{3}{''}=\left( \frac{e^{-\varsigma \left( 1-\gamma _{k}\right) }-1}{e^{-\varsigma }-1}\right) ^{g}\left( \frac{e^{-\varsigma \left( 1-\gamma _{j}\right) }-1}{e^{-\varsigma }-1}\right) ^{h}. \end{aligned}$$

Appendix 5

Case 8: When \(\xi (t)=\ln \left( \frac{1-\varsigma (1-t)}{t}\right)\) with \(\varsigma \in [-1, 1)\), we have

$$\begin{aligned}&IVIFCBM^{g, h} \left( \mathscr {\tilde{Q}}_{1}, \mathscr {\tilde{Q}}_{2}, \ldots , \mathscr {\tilde{Q}}_{n} \right) \nonumber \\&\quad =\left( \begin{array}{ccc} \left[ \frac{1-\varsigma }{u_{4}-\varsigma }, \frac{1-\varsigma }{v_{4}-\varsigma } \right] , \left[ 1-\frac{1-\varsigma }{p_{4}-\varsigma }, 1-\frac{1-\varsigma }{q_{4}-\varsigma }\right] \end{array}\right) , \end{aligned}$$

where

$$\begin{aligned}&u_{4}=\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{u_{4}{'}-\varsigma }\right) }{1-\frac{1-\varsigma }{u_{4}{'}-\varsigma }}\right) ^{\frac{1}{g+h}}, v_{4}=\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{u_{4}{'}-\varsigma }\right) }{1-\frac{1-\varsigma }{v_{4}{'}-\varsigma }}\right) ^{\frac{1}{g+h}},\\&p_{4}=\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{u_{4}{'}-\varsigma }\right) }{1-\frac{1-\varsigma }{p_{4}{'}-\varsigma }}\right) ^{\frac{1}{g+h}}, q_{4}=\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{u_{4}{'}-\varsigma }\right) }{1-\frac{1-\varsigma }{q_{4}{'}-\varsigma }}\right) ^{\frac{1}{g+h}};\\&u_{4}^{'}=\prod \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{u_{4}{''}-\varsigma }\right) }{1-\frac{1-\varsigma }{u_{4}{''}-\varsigma }}\right) ^{\frac{1}{n\left( n-1\right) }}, v_{4}^{'}=\prod \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{v_{4}{''}-\varsigma }\right) }{1-\frac{1-\varsigma }{v_{4}{''}-\varsigma }}\right) ^{ \frac{1}{n\left( n-1\right) }},\\&p_{4}^{'}=\prod \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{p_{4}{''}-\varsigma }\right) }{1-\frac{1-\varsigma }{p_{4}{''}-\varsigma }}\right) ^{ \frac{1}{n\left( n-1\right) }}, q_{4}^{'}=\prod \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{q_{4}{''}-\varsigma }\right) }{1-\frac{1-\varsigma }{q_{4}{''}-\varsigma }}\right) ^{ \frac{1}{n\left( n-1\right) }}\\&u_{4}{''}=\left( \frac{1-\varsigma \left( 1-\alpha _{k}\right) }{\alpha _{k}}\right) ^{g}\left( \frac{1-\varsigma \left( 1-\alpha _{j}\right) }{\alpha _{j}}\right) ^{h},\\&v_{4}{''}=\left( \frac{1-\varsigma \left( 1-\beta _{k}\right) }{\beta _{k}}\right) ^{g}\left( \frac{1-\varsigma \left( 1-\beta _{j}\right) }{\beta _{j}}\right) ^{h},\\&p_{4}{''}=\left( \frac{1-\varsigma \gamma _{k}}{1-\gamma _{i}}\right) ^{g}\left( \frac{1-\varsigma \gamma _{j}}{1-\gamma _{j}}\right) ^{h}, q_{4}{''}=\left( \frac{1-\varsigma \delta _{k}}{1-\delta _{i}}\right) ^{g}\left( \frac{1-\varsigma \delta _{j}}{1-\delta _{j}}\right) ^{h}. \end{aligned}$$

Appendix 6

Case 16: When \(\xi (t)=\ln \left( \frac{e^{-\varsigma t}-1}{e^{-\varsigma }-1}\right) (\varsigma \ne 0)\), we have

$$\begin{aligned}&IVIFCBM^{g, h} \left( \mathscr {\tilde{Q}}_{1}, \mathscr {\tilde{Q}}_{2}, \ldots , \mathscr {\tilde{Q}}_{n} \right) \nonumber \\&\quad =\left( \begin{array}{ccc}\left[ -\frac{1}{\varsigma }\ln \left( u_{3}\left( e^{-\varsigma }-1\right) +1\right) , -\frac{1}{\varsigma }\ln \left( v_{3}\left( e^{-\varsigma }-1\right) +1\right) \right] , \\ \left[ 1+\frac{1}{\varsigma }\ln \left( p_{3}\left( e^{-\varsigma }-1\right) +1\right) , 1+\frac{1}{\varsigma }\ln \left( q_{3}\left( e^{-\varsigma }-1\right) +1\right) \right] \end{array}\right) \end{aligned}$$

where

$$\begin{aligned}&u_{3}=\left( \frac{e^{-\varsigma \left( 1+\frac{1}{\varsigma }\ln \left( u_{3}{'}\left( e^{-\varsigma }-1\right) +1\right) \right) }-1}{e^{-\varsigma }-1}\right) ^{\frac{1}{g+h}},\\&v_{3}=\left( \frac{e^{-\varsigma \left( 1+\frac{1}{\varsigma }\ln \left( u_{3}{'}\left( e^{-\varsigma }-1\right) +1\right) \right) }-1}{e^{-\varsigma }-1}\right) ^{\frac{1}{g+h}},\\&p_{3}=\left( \frac{e^{-\varsigma \left( 1+\frac{1}{\varsigma }\ln \left( u_{3}{'}\left( e^{-\varsigma }-1\right) +1\right) \right) }-1}{e^{-\varsigma }-1}\right) ^{\frac{1}{g+h}},\\&q_{3}=\left( \frac{e^{-\varsigma \left( 1+\frac{1}{\varsigma }\ln \left( u_{3}{'}\left( e^{-\varsigma }-1\right) +1\right) \right) }-1}{e^{-\varsigma }-1}\right) ^{\frac{1}{g+h}}; \\&u_{3}{'}=\left( \prod \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\left( \frac{e^{-\varsigma \left( 1+\frac{1}{\varsigma }\ln \left( u_{3}{''}\left( e^{-\varsigma }-1\right) +1\right) \right) }-1}{e^{-\varsigma }-1}\right) \right) ^{\frac{1}{n\left( n-1\right) }},\\&v_{3}{'}=\left( \prod \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\left( \frac{e^{-\varsigma \left( 1+\frac{1}{\varsigma }\ln \left( v_{3}{''}\left( e^{-\varsigma }-1\right) +1\right) \right) }-1}{e^{-\varsigma }-1}\right) \right) ^{\frac{1}{n\left( n-1\right) }},\\&p_{3}{'}=\left( \prod \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\left( \frac{e^{-\varsigma \left( 1+\frac{1}{\varsigma }\ln \left( p_{3}{''}\left( e^{-\varsigma }-1\right) +1\right) \right) }-1}{e^{-\varsigma }-1}\right) \right) ^{\frac{1}{n\left( n-1\right) }},\\&q_{3}{'}=\left( \prod \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\left( \frac{e^{-\varsigma \left( 1+\frac{1}{\varsigma }\ln \left( q_{3}{''}\left( e^{-\varsigma }-1\right) +1\right) \right) }-1}{e^{-\varsigma }-1}\right) \right) ^{\frac{1}{n\left( n-1\right) }};\\&u_{3}{''}=\left( \frac{e^{-\varsigma \left( u_{3''}^{i} \right) }-1}{e^{-\varsigma }-1}\right) ^{g} \left( \frac{e^{-\varsigma \left( u_{3''}^{j} \right) }-1}{e^{-\varsigma }-1}\right) ^{h},\\&v_{3}{''}=\left( \frac{e^{-\varsigma \left( v_{3''}^{i} \right) }-1}{e^{-\varsigma }-1}\right) ^{g} \left( \frac{e^{-\varsigma \left( v_{3''}^{j} \right) }-1}{e^{-\varsigma }-1}\right) ^{h},\\&p_{3}{''}=\left( \frac{e^{-\varsigma \left( p_{3''}^{i} \right) }-1}{e^{-\varsigma }-1}\right) ^{g} \left( \frac{e^{-\varsigma \left( p_{3''}^{j} \right) }-1}{e^{-\varsigma }-1}\right) ^{h},\\&p_{3}{''}=\left( \frac{e^{-\varsigma \left( q_{3''}^{i} \right) }-1}{e^{-\varsigma }-1}\right) ^{g} \left( \frac{e^{-\varsigma \left( q_{3''}^{j} \right) }-1}{e^{-\varsigma }-1}\right) ^{h}\\&u_{3''}^{i}=1+\frac{1}{\varsigma }\ln \left( \left( \frac{e^{-\varsigma \left( 1-\alpha _{k}\right) }-1}{e^{-\varsigma }-1}\right) ^{n\omega _{k}}\left( e^{-\varsigma }-1\right) +1\right) ,\\&u_{3''}^{j}=1+\frac{1}{\varsigma }\ln \left( \left( \frac{e^{-\varsigma \left( 1-\alpha _{j}\right) }-1}{e^{-\varsigma }-1}\right) ^{n\omega _{j}}\left( e^{-\varsigma }-1\right) +1\right) ,\\&v_{3''}^{i}=1+\frac{1}{\varsigma }\ln \left( \left( \frac{e^{-\varsigma \left( 1-\beta _{k}\right) }-1}{e^{-\varsigma }-1}\right) ^{n\omega _{k}}\left( e^{-\varsigma }-1\right) +1\right) ,\\&v_{3''}^{j}=1+\frac{1}{\varsigma }\ln \left( \left( \frac{e^{-\varsigma \left( 1-\beta _{j}\right) }-1}{e^{-\varsigma }-1}\right) ^{n\omega _{j}}\left( e^{-\varsigma }-1\right) +1\right) ,\\&p_{3''}^{i}=1+\frac{1}{\varsigma }\ln \left( \left( \frac{e^{-\varsigma \gamma _{k}}-1}{e^{-\varsigma }-1}\right) ^{n\omega _{k}}\left( e^{-\varsigma }-1\right) +1\right) ,\\&p_{3''}^{j}=1+\frac{1}{\varsigma }\ln \left( \left( \frac{e^{-\varsigma \gamma _{j}}-1}{e^{-\varsigma }-1}\right) ^{n\omega _{j}}\left( e^{-\varsigma }-1\right) +1\right) ,\\&q_{3''}^{i}=1+\frac{1}{\varsigma }\ln \left( \left( \frac{e^{-\varsigma \delta _{k}}-1}{e^{-\varsigma }-1}\right) ^{n\omega _{k}}\left( e^{-\varsigma }-1\right) +1\right) ,\\&q_{3''}^{j}=1+\frac{1}{\varsigma }\ln \left( \left( \frac{e^{-\varsigma \delta _{j}}-1}{e^{-\varsigma }-1}\right) ^{n\omega _{j}}\left( e^{-\varsigma }-1\right) +1\right) . \end{aligned}$$

Appendix 7

Case 17: When \(\xi (t)=\ln \left( \frac{1-\varsigma (1-t)}{t}\right)\) with \(\varsigma \in [-1, 1)\), we have

$$\begin{aligned}&IVIFWCBM^{g, h} \left( \mathscr {\tilde{Q}}_{1}, \mathscr {\tilde{Q}}_{2}, \ldots , \mathscr {\tilde{Q}}_{n} \right) \nonumber \\&\quad =\left( \left[ \frac{1-\varsigma }{u_{4}-\varsigma }, \frac{1-\varsigma }{v_{4}-\varsigma } \right] , \left[ 1-\frac{1-\varsigma }{p_{4}-\varsigma }, 1-\frac{1-\varsigma }{q_{4}-\varsigma }\right] \right) , \end{aligned}$$

where

$$\begin{aligned}&u_{4}=\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{u_{4}{'}-\varsigma }\right) }{1-\frac{1-\varsigma }{u_{4}{'}-\varsigma }}\right) ^{\frac{1}{g+h}}, v_{4}=\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{v_{4}{'}-\varsigma }\right) }{1-\frac{1-\varsigma }{v_{4}{'}-\varsigma }}\right) ^{\frac{1}{g+h}},\\&p_{4}=\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{p_{4}{'}-\varsigma }\right) }{1-\frac{1-\varsigma }{p_{4}{'}-\varsigma }}\right) ^{\frac{1}{g+h}}, q_{4}=\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{q_{4}{'}-\varsigma }\right) }{1-\frac{1-\varsigma }{q_{4}{'}-\varsigma }}\right) ^{\frac{1}{g+h}};\\&u_{4}{'}=\prod \limits _{\begin{array}{c} { k,j=1} \\ {k \ne j} \end{array}}^{n}\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{u_{4}{''}-\varsigma }\right) }{1-\frac{1-\varsigma }{u_{4}{''}-\varsigma }}\right) ^{ \frac{1}{n\left( n-1\right) }}, v_{4}{'}=\prod \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{v_{4}{''}-\varsigma }\right) }{1-\frac{1-\varsigma }{v_{4}{''}-\varsigma }}\right) ^{ \frac{1}{n\left( n-1\right) }},\\&p_{4}{'}=\prod \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{p_{4}{''}-\varsigma }\right) }{1-\frac{1-\varsigma }{p_{4}{''}-\varsigma }}\right) ^{ \frac{1}{n\left( n-1\right) }}, q_{4}{'}=\prod \limits _{\begin{array}{c} { k,j=1} \\ {k\ne j} \end{array}}^{n}\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{q_{4}{''}-\varsigma }\right) }{1-\frac{1-\varsigma }{q_{4}{''}-\varsigma }}\right) ^{ \frac{1}{n\left( n-1\right) }};\\&u_{4}{''}=\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{u_{4''}^{i}-\varsigma }\right) }{1-\frac{1-\varsigma }{u_{4''}^{i}-\varsigma }}\right) ^{g}\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{u_{4''}^{j}-\varsigma }\right) }{1-\frac{1-\varsigma }{u_{4''}^{j}-\varsigma }}\right) ^{h},\\&v_{4}{''}=\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{p_{4''}^{i}-\varsigma }\right) }{1-\frac{1-\varsigma }{p_{4''}^{i}-\varsigma }}\right) ^{g}\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{p_{4''}^{j}-\varsigma }\right) }{1-\frac{1-\varsigma }{p_{4''}^{j}-\varsigma }}\right) ^{h},\\&p_{4}{''}=\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{v_{4''}^{i}-\varsigma }\right) }{1-\frac{1-\varsigma }{v_{4''}^{i}-\varsigma }}\right) ^{g}\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{v_{4''}^{j}-\varsigma }\right) }{1-\frac{1-\varsigma }{v_{4''}^{j}-\varsigma }}\right) ^{h},\\&q_{4}{''}=\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{q_{4''}^{i}-\varsigma }\right) }{1-\frac{1-\varsigma }{q_{4''}^{i}-\varsigma }}\right) ^{g}\left( \frac{1-\varsigma \left( \frac{1-\varsigma }{q_{4''}^{j}-\varsigma }\right) }{1-\frac{1-\varsigma }{q_{4''}^{j}-\varsigma }}\right) ^{h};\\&u_{4''}^{i}=\left( \frac{1-\varsigma \alpha _{k}}{1-\alpha _{k}}\right) ^{n\omega _{k}}, u_{4}^{j}=\left( \frac{1-\varsigma \alpha _{j}}{1-\alpha _{j}}\right) ^{n\omega _{j}},\\&v_{4''}^{i}=\left( \frac{1-\varsigma \beta _{k}}{1-\beta _{k}}\right) ^{n\omega _{k}}, v_{4''}^{j}=\left( \frac{1-\varsigma \beta _{j}}{1-\beta _{j}}\right) ^{n\omega _{j}},\\&p_{4''}^{i}=\left( \frac{1-\varsigma \left( 1-\gamma _{k}\right) }{\gamma _{k}}\right) ^{n\omega _{i}}, p_{4''}^{j}=\left( \frac{1-\varsigma \left( 1-\gamma _{j}\right) }{\gamma _{j}}\right) ^{n\omega _{i}},\\&q_{4''}^{i}=\left( \frac{1-\varsigma \left( 1-\delta _{k}\right) }{\delta _{k}}\right) ^{n\omega _{k}}, q_{4''}^{j}=\left( \frac{1-\varsigma \left( 1-\delta _{j}\right) }{\delta _{j}}\right) ^{n\omega _{i}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, Y., Liu, Y. & Pei, Z. Interval-Valued Intuitionistic Fuzzy Generalised Bonferroni Mean Operators for Multi-attribute Decision Making. Int. J. Fuzzy Syst. 23, 1728–1754 (2021). https://doi.org/10.1007/s40815-021-01064-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01064-3

Keywords

Navigation