Skip to main content
Log in

Type-2 Fuzzy Adaptive Event-Triggered Saturation Control for Photovoltaic Grid-Connected Power Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The adaptive interval type-2 (IT2) fuzzy event-triggered saturation control scheme is proposed for a photovoltaic power system with unknown equivalent resistances and the disturbance of the power grid voltage. As the equivalent resistors and the disturbance are uncertain, interval type-2 fuzzy logic systems (IT2FLSs) are used to handle the uncertain nonlinear dynamics. Based on backstepping control design and command filtered techniques, by considering the limited communication resources of the system, an event-triggered saturation controller is designed, and the constraint conditions of the control signal are guaranteed. According to the Lyapunov theory, it is ensured that all the variables of the closed-loop photovoltaic system are bounded. The simulation results demonstrate the effectiveness and superiority of the presented control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Castillo, O., Amador-Angulo, L.: A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design. Inf. Sci. 460–461, 476–496 (2018)

    Article  Google Scholar 

  2. Chen, Y., Tan, R., Zheng, Y., Zhou, Z.: Sliding-mode control with multipower approaching law for DC-link voltage of Z-source photovoltaic inverters. IEEE Access 7, 133812–133821 (2019)

    Article  Google Scholar 

  3. Dian, S., Han, J., Guo, R., Li, S., Wu, Q.: Double closed-loop general type-2 fuzzy sliding model control for trajectory tracking of wheeled mobile robots. Int. J. Fuzzy Syst. 21, 2032–2042 (2019)

    Article  MathSciNet  Google Scholar 

  4. Dong, W., Farrell, J.A., Polycarpou, M.M., Djapic, V., Sharma, M.: Command filtered adaptive backstepping. IEEE Trans. Control Syst. Technol. 20(3), 566–580 (2012)

    Article  Google Scholar 

  5. Hannan, M.A., Ghani, Z.A., Hoque, M.M., Ker, P.J., Hussain, A., Mohamed, A.: Fuzzy logic inverter controller in photovoltaic applications: issues and recommendations. IEEE Access 7, 24934–24955 (2019)

    Article  Google Scholar 

  6. He, J., Zhang, X.: Comparison of the back-stepping and PID control of the three-phase inverter with fully consideration of implementation cost and performance. Chin. J. Electr. Eng. 4(2), 82–89 (2018)

    Article  Google Scholar 

  7. Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7(6), 643–658 (1999)

    Article  Google Scholar 

  8. Li, C., Zhou, C., Peng, W., Lv, Y., Luo, X.: Accurate prediction of short-term photovoltaic power generation via a novel double-input-rule-modules stacked deep fuzzy method. Energy 212, 118700 (2020)

    Article  Google Scholar 

  9. Li, H., Wang, J., Wu, L., Lam, H., Gao, Y.: Optimal guaranteed cost sliding-mode control of interval type-2 fuzzy time-delay systems. Trans. Fuzzy Syst. 26(1), 246–257 (2018)

    Article  Google Scholar 

  10. Li, R., Hu, Y., Liang, Q.: T2F-LSTM method for long-term traffic volume prediction. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/tfuzz.2020.2986995

  11. Li, Y., Tong, S.: Command-filtered-based fuzzy adaptive control design for MIMO-switched nonstrict-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 25(3), 668–681 (2017)

    Article  Google Scholar 

  12. Liang, Q., Mendel, J.M.: Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters. IEEE Trans. Fuzzy Syst. 8(5), 551–563 (2000)

    Article  Google Scholar 

  13. Mahmud, N., Zahedi, A., Mahmud, A.: A cooperative operation of novel PV inverter control scheme and storage energy management system based on ANFIS for voltage regulation of grid-tied PV system. IEEE Trans. Ind. Inf. 13(5), 2657–2668 (2017)

    Article  Google Scholar 

  14. Martin, A.D., Cano, J.M., Medina-Garca, J., Gmez-Galn, J.A., Vazquez, J.R.: Centralized MPPT controller system of PV modules by a wireless sensor network. IEEE Access 8, 71694–71707 (2020)

    Article  Google Scholar 

  15. Mendel, J.M., John, R.I., Liu, F.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)

    Article  Google Scholar 

  16. Mendel, J.M., Liu, X.: Simplified interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 21(6), 1056–1069 (2013)

    Article  Google Scholar 

  17. Merabet, A., Labib, L., Ghias, A.M.Y.M., Ghenai, C., Salameh, T.: Robust feedback linearizing control with sliding mode compensation for a grid-connected photovoltaic inverter system under unbalanced grid voltages. IEEE J. Photovolt. 7(3), 828–838 (2017)

    Article  Google Scholar 

  18. Mittal, K., Jain, A., Vaisla, K.S., Castillo, O., Kacprzyk, J.: A comprehensive review on type 2 fuzzy logic applications: past, present and future. Eng. Appl. Artif. Intell. 95, 103916 (2020)

    Article  Google Scholar 

  19. Mo, H., Yan, K., Zhao, X., Zeng, Y., Wang, X., Wang, F.: Type-2 fuzzy comprehension evaluation for tourist attractive competency. IEEE Trans. Comput. Soc. Syst. 6(1), 96–102 (2019)

    Article  Google Scholar 

  20. Mo, H., Zhao, X., Wang, F.Y.: Application of interval type-2 fuzzy sets in unmanned vehicle visual guidance. Int. J. Fuzzy Syst. 21, 1661–1668 (2019)

    Article  Google Scholar 

  21. Mosalam, H.A., Amer, R.A., Morsy, G.A.: Fuzzy logic control for a grid-connected PV array through Z-source-inverter using maximum constant boost control method. Ain Shams Eng. J. 9, 2931–2941 (2018)

    Article  Google Scholar 

  22. Muhuri, P.K., Ashraf, Z., Lohani, Q.M.D.: Multiobjective reliability redundancy allocation problem with interval type-2 fuzzy uncertainty. IEEE Trans. Fuzzy Syst. 26(3), 1339–1355 (2018)

    Google Scholar 

  23. Naik N.V., Singh, S.P.: A novel interval type-2 fuzzy-based direct torque control of induction motor drive using five-level diode-clamped inverter. IEEE Trans. Ind. Electron. 68(1), 149–159 (2021)

  24. Naik N.V., Singh, S.P., Panda, A.K.: An interval type-2 fuzzy-based DTC of IMD using hybrid duty ratio control. IEEE Trans. Power Electron. 35(8), 8443–8451 (2020)

  25. Panda, A.: Interval type-2 fuzzy based photovoltaic distributed generation system with enhanced power quality feature. IETE J. Res. 66, 1–14 (2019)

    Google Scholar 

  26. Peng, W., Li, C., Zhang, G., Yi, J.: Interval type-2 fuzzy logic based transmission power allocation strategy for lifetime maximization of WSNs. Eng. Appl. Artif. Intell. 87, 103269– (2020)

  27. Priyadarshi, N., Padmanaban, S., Bhaskar, M.S., Blaabjerg, F., Sharma, A.: A fuzzy SVPWM based inverter control realization of grid integrated PV-wind system with FPSO MPPT algorithm for a grid-connected PV/wind power generation system: hardware implementation. IET Electr. Power Appl. 12(7), 962–971 (2018)

    Article  Google Scholar 

  28. Selvaraj, J., Rahim, N.A.: Multilevel inverter for grid-connected PV system employing digital PI controller. IEEE Trans. Ind. Electron. 56(1), 149–158 (2009)

    Article  Google Scholar 

  29. Shukla, A.K., Banshal, S.K., Seth, T., Basu, A., John, R., Muhuri, P.K.: A bibliometric overview of the field of type-2 fuzzy sets and systems. IEEE Comput. Intell. Mag. 15(1), 89–98 (2020)

    Article  Google Scholar 

  30. Tao, X., Yi, J., Pu, Z., Xiong, T.: Robust adaptive tracking control for hypersonic vehicle based on interval type-2 fuzzy logic system and small-gain approach. IEEE Trans. Cybernetics pp. 1–14 (2019)

  31. Wang, L., Karimi, H.R., Gu, J.: Stability analysis for interval type-2 fuzzy systems by applying homogenous polynomially membership functions dependent matrices and switching technique. IEEE Trans. Fuzzy Syst. (2020). http://doi.org/10.1109/tfuzz.2020.3018175

  32. Wang, T., Tong, S., Yi, J., Li, H.: Adaptive inverse control of cable-driven parallel system based on type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 23(5), 1803–1816 (2015)

    Article  Google Scholar 

  33. Weng, S., Yue, D., Shi, J.: Distributed cooperative control for multiple photovoltaic generators in distribution power system under event-triggered mechanism. J. Franklin Inst. 353, 3407–3427 (2016)

    Article  MathSciNet  Google Scholar 

  34. Wu, D., Mendel, J.M.: Enhanced Karnik-Mendel algorithms. IEEE Trans. Fuzzy Syst. 17(4), 923–934 (2009)

    Article  Google Scholar 

  35. Wu, D., Mendel, J.M.: Similarity measures for closed general type-2 fuzzy sets: overview, comparisons, and a geometric approach. IEEE Trans. Fuzzy Syst. 27(3), 515–526 (2019)

    Article  Google Scholar 

  36. Yang, S., Lei, Q., Peng, F.Z., Qian, Z.: A robust control scheme for grid-connected voltage-source inverters. IEEE Trans. Ind. Electron. 58(1), 202–212 (2011)

    Article  Google Scholar 

  37. Yang, T., Cai, Z., Xun, Q.: Adaptive backstepping-based \({H_{\infty }}\) robust controller for photovoltaic grid-connected inverter. IEEE Access 8, 17263–17272 (2020)

    Article  Google Scholar 

  38. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning-I. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  39. Zhao, T., Yu, Q., Dian, S., Guo, R., Li, S.: Non-singleton general type-2 fuzzy control for a two-wheeled self-balancing robot. Int. J. Fuzzy Syst. 21, 1724–1737 (2019)

    Article  MathSciNet  Google Scholar 

  40. Zhong, Z.: Tracking synchronization for DC microgrid with multiple-photovoltaic arrays: an event-based fuzzy control scheme. IEEE Access 6, 24996–25006 (2018)

    Article  Google Scholar 

  41. Zhong, Z., Zhu, Y., Lam, H.: Asynchronous piecewise output-feedback control for large-scale fuzzy systems via distributed event-triggering schemes. IEEE Trans. Fuzzy Syst. 26(3), 1688–1703 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant No. 61822307 and Shandong Key Laboratory of Intelligent Buildings Technology (Grant No. 2019019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiechao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhang, X. & Li, Y. Type-2 Fuzzy Adaptive Event-Triggered Saturation Control for Photovoltaic Grid-Connected Power Systems. Int. J. Fuzzy Syst. 23, 1150–1162 (2021). https://doi.org/10.1007/s40815-021-01078-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01078-x

Keywords

Navigation