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Abstract The older population faces a high probability of

experiencing age-related problems, such as osteoporosis,

immobility, gait disturbances, stroke, Parkinson’s disease,

and cognitive behavioral functional difficulties. Such

problems negatively affect their lives. Thus, access to long-

term care is a critical issue for older adults. In response to

the aforementioned serious health issues, society must

strive to provide a supportive and effective rehabilitation

environment for older adults. This study designed an

intelligent active and passive limb rehabilitation system to

track and quantify the effectiveness of joint movements in

patients automatically. The proposed method uses a camera

and PoseNet to capture key feature information regarding

human skeleton nodes and identify rehabilitation actions

through joint movements. In addition, to solve the problem

of joint occlusion during joint angle measurement, the

designed system is equipped with a self-designed inertial

measurement unit with GY-85 nine-axis sensors, which are

mounted on the occluding part of the joints. A fuzzy

inference system was developed to provide scores, sug-

gestions, and encouragement for each rehabilitation ses-

sion. This system also provides an interactive interface for

users to monitor each rehabilitation session and examine

whether rehabilitation is performed accurately.

Keywords Power rehabilitation � Fuzzy inference system �
Parkinson’s disease � Inertial measurement unit (IMU)

1 Introduction

In developed countries, the population of those aged

60 years or older is growing faster than the populations of

other age groups. A survey of world population prospects

conducted in 2019 projected that 1 in 6 people in the world

(16% of the global population) would be older than

65 years by 2050. By comparison, in 2019, 1 in 11 people

in the world (9% of the global population) were older than

65 years [1]. This projected demographic shift will pose

significant challenges for health care systems and increase

the demand for long-term care. Age-associated conditions

cause multimorbidity and geriatric syndromes [2], such as

frailty [3], delirium [4], impaired cognition [5], visual

impairment, and sarcopenia [6], among aging populations

[7, 8]. The aforementioned conditions increase the risk of

disability with impairments in activities of daily living.

Parkinson’s disease (PD), dementia, and stroke [9] are

major and common chronic diseases faced by the elderly
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that are associated with impaired mobility, tremor, limb

stiffness, decreased motor function, and abnormal gait. The

clinical assessment of older people with disability and

impairments in body functioning is challenging. Nearly

two-thirds of people admitted to hospitals are over 65 years

old [10] and have been diagnosed with PD or dementia

[11]. In the case of acute illnesses, individuals older than

65 years face a significantly longer length of hospital stay

than those younger than 65 years do. In the case of older

individuals with acute illnesses, rehabilitation is considered

the most important factor for regaining and maintaining

optimal physical functioning in daily life [12]. Rehabili-

tation exercises usually involve different joint kinematics,

including flexion, extension, abduction, rotation, and

deviation of body function [13]. Thus, rehabilitation exer-

cises focus on the posture during an action and joint

movement ability of an individual [14].

Although evidence exists regarding the clinical effec-

tiveness of rehabilitation services, inadequate rehabilitation

services are available to many elderly people [15]. The

reasons for this phenomenon include the high number of

patients with multiple long-term conditions who require

rehabilitation services; the complex set of processes

involved in these services, which usually requires several

professional practitioners across the entire continuum of

rehabilitation to conduct monitoring and provide assis-

tance; and the lack of comprehensive organization of care

for evaluating therapeutic interventions according to the

patient’s clinical context and needs. To provide a holistic

assessment of rehabilitation, we designed a rehabilitation

system that includes wearable sensors to calculate the joint

angles of patients. An embedded camera is used to capture

the performance of different therapies precisely on the

basis of key feature information regarding a patient’s

posture. To address the limited availability of experts and

physical therapists, an interactive interface is incorporated

into the system to enable users to monitor each rehabili-

tation session and ensure that the rehabilitation exercises

are performed correctly. Furthermore, to determine the

effectiveness of rehabilitation, the signals transmitted by

the rehabilitation devices are stored on a cloud; thus,

patients who require regular rehabilitation at home can be

assisted and monitored by practitioners and provided

information on the progress of their rehabilitation instantly.

Major contributions of this study include:

• a fuzzy inference model is proposed to objectively

score the rehabilitation exercises based on sensor

readings;

• multiperson rehabilitation at the same time is allowed;

• multifactorial rehabilitation can deal with joints move-

ment, range of motion, and posture are possible;

• alert of wrong joint exercise with flash light is

provided;

• individual guide videos on the reference exercise are

played for each participant;

• a patient can self-rehabilitate at home that greatly

reduces the manpower needs of the rehabilitation.

The remainder of this paper is organized as follows:

Sect. 2 presents the background of the fuzzy inference

models required in the study. Section 3 describes the

design methodology for the proposed rehabilitation system.

Section 4 provides the experimental results. Section 5

presents a discussion of the research results and a com-

parison of these results with those of related studies.

Finally, Sect. 6 presents the conclusions of this study and

recommendation for future studies.

2 Background of the Present Study

This section provides an overview of fuzzy applications to

address the uncertainty of event scores obtained during

rehabilitation exercises. PoseNet is used to obtain key

features of the human anatomy, and the direction cosine

matrix (DCM) is used to determine the rotations of wear-

able sensors in different coordinate systems.

2.1 Fuzzy Implication of Uncertain Rehabilitation

Events

Rehabilitation exercises usually involve different joint

arthrokinematics, including flexion, extension, abduction,

adduction, medial and lateral rotation, and deviation

[16–18], to increase the mobility of restricted joints or

muscles and gradually restoring the stability of motion. The

mechanistic modeling of physical therapy is often com-

plicated by the presence of uncertainties. Moreover, the

functional abilities of muscular strength and endurance are

assessed using subjective estimation or expert personal

experiences and classical logic [such as pass (1) or fail (0)].

The modeling of real situations with a conventional deci-

sion model may not indicate the degree to which a decision

is certain and reliable for joint muscular strength and

endurance, range of motion, or significant increases in the

customizable parameters of every individual rehabilitation,

for example.

Suppose that a patient must execute a chest press during

rehabilitation. A chest press involves left and right shoulder

abduction as well as left and right elbow flexion. A phys-

ical therapist stands near the patient to evaluate the

patient’s performance visually on the basis of a preset

baseline. By referring to the baseline, the physical therapist

marks an abduction as either ‘‘passed’’ or ‘‘failed’’ on the
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patient’s score sheet. No partial score can be provided even

if the extent of abduction was marginally below the base-

line. In this situation, the evaluation considerably depends

on the visual judgment of the physical therapist, not a

quantitative approach that may not be applicable to real-

time scenarios. In contrast to the aforementioned method, a

fuzzy-logic-based approach enables the consideration of

uncertainties associated with a decision [19, 20].

The possible distribution of a sensor’s readings can be

represented by its corresponding degree of membership

using a predefined fuzzy set. For instance, suppose that

U = {re1, re2,…,rei,…,ren}, i = 1, 2,…,n, represents a

universal set for n rehabilitation events. In this case, the

individual sensor readings obtained during a sequence of

exercises can be characterized by linguistic variables such

as low, moderate, high, and full. To indicate changes in

sensor readings, we can define a fuzzy set X based on the

rehabilitation event as follows:

X ¼ l re1ð Þ
re1

þ l re2ð Þ
re2

þ � � � l reið Þ
rei

þ � � � þ l renð Þ
ren1

; ð1Þ

where l(rei) represents a membership degree between [0,

1] for the rehabilitation event rei associated with the fuzzy

set X.

2.2 Fuzzy Inference System

A fuzzy inference system, FIS [21] is used to map input

patterns to infer their desired output. The number of fuzzy

rules can be selected manually by the user or automatically

generated from the combinations of labels assigned for the

input variables. The implementation of the FIS involves the

following steps:

Step 1 Each input and output variable and a set of its

corresponding membership functions is defined in

advance. Furthermore, a fuzzy rule base that

correlates the input and output variables is also

generated.

Step 2 Input data are fuzzified using membership

functions.

Step 3 The t-norm operation is applied to the antecedent

part of the rule to calculate the firing strength of a

rule.

Step 4 A set of sensor readings may activate more than

one rule simultaneously. A decision-making logic

based on the t-conorm operation is used for

determining the fuzzy output.

Step 5 A defuzzification process is used to infer a crisp

output value.

2.3 Direction Cosine Matrix

A DCM, which is also referred to as a rotation matrix,

defines the rotation of one coordinate frame with respect to

another coordinate frame. It uses three-dimensional

Cartesian coordinates to represent the global coordinate

system and the body coordinate system of an object (i.e.,

OXYZ and Oxyz, respectively). In Fig. 1, X, Y, Z, R, x, y,

and z are unit vectors. Both the global and local coordinate

systems have a fixed origin, namely O (Fig. 1). The DCM

representing the attitude of the body can be converted by

rotating the reference coordinate system specified by a

3 9 3 matrix; thus, any vector in the body coordinate

system Oxyz can be converted into a vector in the global

coordinate system OXYZ using a rotation matrix.

A vector x in the body coordinate system Oxyz can be

represented in the global coordinate system OXYZ as

follows:

xG ¼ xx
G; xy

G; xz
G

� �T
; ð2Þ

where xG is the converted vector represented in the global

coordinate system and . . .½ �T is a column vector that has

been transposed to a row vector. Thus, xx
G can be

expressed as follows: xx
G ¼ Xj j xj jcos X; xð Þ ¼ X � x; where

xj j is the magnitude of the unit vector and cos X; xð Þ is the

cosine of the angle between vectors X and x. The inner

product of X and x is expressed as X � x. Thus, xG, yG, and

zG can be rewritten as follows:

xG ¼ X � x; Y � x; Z � x½ �T; ð3Þ

yG ¼ X � y; Y � y; Z � y½ �T; ð4Þ

zG ¼ X � z; Y � z; Z � z½ �T; ð5Þ

xG; yG; zG
� �

¼
X � x X � y X � z
Y � x Y � y Y � z
Z � x Z � y Z � z

2

4

3

5

¼
cosðX; xÞ cosðX; yÞ cosðX; zÞ
cosðY ; xÞ cosðY; yÞ cosðY ; zÞ
cosðZ; xÞ cosðZ; yÞ cosðZ; zÞ

2

4

3

5

¼ DCMG: ð6Þ

Fig. 1 Coordinates of the DCM
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Similarly, a vector in the global coordinate system OXYZ

can be converted into the body coordinate system Oxyz as

follows:

XL; YL; ZL
� �

¼
X � x Y � x Z � x
X � y Y � y Z � y
X � z Y � z Z � z

2

4

3

5

¼
cosðX; xÞ cosðY; xÞ cosðZ; xÞ
cosðX; yÞ cosðY; yÞ cosðZ; yÞ
cosðX; zÞ cosðY ; zÞ cosðZ; zÞ

2

4

3

5

¼ DCML: ð7Þ

The DCM is used for orienting a rigid body at a desired

attitude. Thus, it can also be used to determine the global

coordinates of an arbitrary vector if the coordinates of this

vector in the body coordinate frame are known. For

instance, if a vector in the body coordinate system Oxyz can

be represented as rL ¼ rx
L; ry

L; rz
L

� �T
, its coordinates in

the global coordinate system OXYZ can be expressed as

rG ¼ rx
G; ry

G; rz
G

� �T
using a known rotation matrix,

namely DCMG; thus, rG
�� �� ¼ rLj j ¼ 1 and

cos XG; rG
� �

¼ cos XL; rL
� �

. Consequently, the following

expression is obtained:

rx
G ¼ rG

�� ��cos XG; rG
� �

¼ XL�rL: ð8Þ

By substituting the expression XL ¼ X � x;X � y;X � z½ �T
in Eq. (8), the following equation is obtained:

rx
G ¼ rx

LX � xþ ry
LX � yþ rz

LX � z: ð9Þ

Finally, the rotation matrix for conversion from the body

coordinate system to the global coordinate system can be

expressed as follows:

rG ¼
rx

G

ry
G

rz
G

2

4

3

5 ¼
X � x X � y X � z
Y � x Y � y Y � z
Z � x Z � y Z � z

2

4

3

5
rx

L

ry
L

rz
L

2

4

3

5 ¼ DCMGrL:

ð10Þ

2.4 Euler Angles

The transformation of a rigid body to a desired attitude can

be achieved by conducting successive rotations along the

X-, Y-, and Z-axes. In terms of the Euler angle, the afore-

mentioned rotation can be represented as successive rota-

tions along the z-, y-, and x-axes. The angle of rotation

about the y-axis is called the pitch angle (h); that around

the x-axis is called the roll angle (u); and that around the z-

axis is called the yaw angle (w). The relationships of the

DCM with h, u, and w can be expressed as follows:

DCMG ¼ R w; h;uð Þ ¼ Rz wð ÞRy hð ÞRx uð Þ; ð11Þ

Rz wð Þ ¼
cosw �sinw 0

sinw cosw 0

0 0 1

2

4

3

5; ð12Þ

Ry hð Þ ¼
cosh 0 sinh

0 1 0

�sinh 0 cosh

2

4

3

5; ð13Þ

Rx uð Þ ¼
1 0 0

0 cosu �sinu
0 sinu cosu

2

4

3

5: ð14Þ

Thus, a rotation R about any arbitrary axis is expressed

in terms of successive rotations about the Z-, Y-, and X-axes

by performing matrix multiplication as follows:

R ¼
coshcosw sinusinhcosw� cosusinw cosusinhcoswþ sinusinw
coshsinw sinusinhsinwþ cosucosw cosusinhsinw� sinucosw
�sinh sinucosh cosucosh

2

4

3

5:

ð15Þ

2.5 Pose Estimator

Pose estimation using a webcam has transformed many

healthcare applications by enabling the tracking of a

patient’s joints and posture. The captured stances provide

quantitative data that can be experimentally and clinically

informative. A pose estimation system can streamline the

data analytics process for patient progress in real time.

After experimentation with multiple computer vision

techniques for pose estimation, we selected OpenPose [22]

for pose detection. OpenPose is a deep learning algorithm

that processes images through a two-branch multistage

convolutional neural network. The first branch predicts the

possible localization of human joints in an image according

to the confidence score. The second branch implements

partial affinity fields to predict a set of two-dimensional

vectors that encodes the degree of association between the

position and orientation of limbs over the image domain.

The output of OpenPose consists of confidence maps and

partial affinity fields that are parsed through greedy infer-

ence to associate body parts with individuals in an image.

To localize a set of coordinates connected to human joints,

17 key points of the human pose, including the nose, neck,

shoulders, elbows, wrists, hips, knees, and ankles, are

considered.

3 Design and Methodology

In this section, we describe the architecture of the proposed

system as well as the design of processes and functions to

make rehabilitation for older patients more preventative

and accessible.
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3.1 Hardware Design

The proposed rehabilitation monitoring and evaluation

system contains hardware devices such as a webcam,

Arduino microcontrollers, an ADXL345 accelerometer, an

ITG3205 gyroscope, an HMC5883L magnetometer, a

CD74HC4067 multiplexer, and two HC-05 Bluetooth

wireless transmission modules. Figure 2 shows the hard-

ware architecture of the proposed rehabilitation monitoring

and evaluation system, which comprises 10 nine-axis sen-

sors, 12 Arduino Nano microcontrollers, an Arduino Mega

2560 microcontroller, two 16-channel analog MUX mod-

ules, a pair of HC-05 Bluetooth transmission modules, and

a USB-to-TTL conversion module. Figure 3 displays the

physical setup of the sensing devices that are mounted on

the joints of the rehabilitation patients. Figure 4 depicts the

circuit configuration of the nine-axis sensing device.

3.2 Application of the Nine-Axis Sensors According

to the DCM

This section describes how to read the values of the nine-

axis sensors, three-axis gyroscope, three-axis accelerome-

ter, and three-axis magnetometer. Gyroscopes are unable to

indicate the absolute device orientation, whereas

accelerometers and magnetometers provide the most

accurate estimation of the device orientation. The readings

obtained from the accelerometer, magnetometer, and

gyroscope are adopted in a fusion algorithm developed in

this study.

A DCM that contains a vector of the global coordinate

system in each row can be defined as follows:

DCMG ¼ xG; yG; zG
� �

¼
XBT

YBT

ZBT

2

4

3

5; ð16Þ

where DCMG is the global DCM; xG; yG; andzG are global

unit vectors; and XBT, YBT, and ZBT are the vectors in the

body coordinate system. On the basis of Eq. (16), let the

accelerometer reading be ZBT , with the starting point at

time t0; then, the acceleration value is ZB
0 and the gyro-

scope value is x0. The acceleration value at the subsequent

moment (ZB
1 ) is estimated from the gyroscope value as

follows:

ZB
1 � ZB

0 þ dt_V ¼ ZB
0 þ dt x0 � ZB

0

� �
¼ ZB

0 þ dhg � ZB
0

� �
:

ð17Þ

The reading obtained from the accelerometer is directly

expressed as ZB
1A, and the angular displacement and

angular velocity of the gyroscope can be obtained from the

acceleration reading as follows:

dha ¼ dtxa; ð18Þ

xa ¼ ZB
0 � Va= ZB

0

�� ��2; ð19Þ

where xa is the angular velocity measured by the gyro-

scope, dha is the angular displacement, and Va is the linear

velocity. Then, the following equation is obtained:

Va ¼ ZB
1A � ZB

0

� �
=dt: ð20Þ

Equation (20) basically expresses the linear velocity of

the vector ZB
0 . Because ZB

0 is a unit vector, it can be

expressed as follows:

dha ¼ ZB
0 � ZB

1A � ZB
0

� �
; ð21Þ

where ZB
1A is the new accelerometer reading.

The aim of calculating a new estimate (ZB
1A) is to obtain

dh as a weighted average of dha and dhg. Because the

magnetometer parameters are not used in the aforemen-

tioned operation, a significant drift occurs in the rotation

angle w. The operation of the magnetometer is similar toFig. 2 Hardware architecture of the proposed rehabilitation moni-

toring and evaluation system

Fig. 3 Physical setup of the nine-axis sensing device

Fig. 4 Circuit configuration of the nine-axis sensing devices
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that for the accelerometer. The only difference is that the Z-

axis is changed to the X-axis, that is, the vector pointing

north is estimated. However, the sensor readings do not

necessarily result in the Z- and X-axis being orthogonal to

each other every time. Consequently, error accumulation

occurs and the represented body is no longer a rigid body.

Thus, the errors must be corrected.

The DCM is renormalized to obtain an orthogonal

relationship between the X- and Z-axes. For instance,

allocating errors for Z and X rows and rotating them in

opposite direction by cross coupling defined as:

Zorthogonal ¼ Z � error

2
X; ð22Þ

Xorthogonal ¼ X � error

2
Z: ð23Þ

The Y row of the matrix was adjusted to be orthogonal to

the Z and X rows. The cross product of the corrected Z and

X rows is expressed as follows:

Yorthogonal ¼ Zorthogonal � Xorthogonal: ð24Þ

Finally, the three-axis vector is normalized as follows:

Xorthogonal ¼ 1

2
3 � Xorthogonal � Xorthogonal

� �
Xorthogonal;

ð25Þ

Yorthogonal ¼ 1

2
3 � Yorthogonal � Yorthogonal

� �
Yorthogonal;

ð26Þ

Zorthogonal ¼ 1

2
3 � Zorthogonal � Zorthogonal

� �
Zorthogonal:

ð27Þ

In this manner, the readings obtained from the

accelerometer, gyroscope, and magnetometer can be

combined to construct the DCM.

3.3 Execution of the Proposed Rehabilitation

System

The proposed system mainly includes two modules. The

first module includes a network camera for capturing the

key features of anatomical joints, from which the joint

angles are calculated. The obtained information is stored

on a computer. In the second module, to avoid the occlu-

sion of joint angles during rehabilitation, 10 sensing units

are worn on 10 joints of the body, such as in both forearms,

the upper arms of both hands, the T1 and S2 positions of

the spine, the thighs, and the calves. A Unity 3D model

running on the computer is used to simulate the joint angle

signals of patients, as illustrated in Fig. 5.

The joint angle signals of patients are calculated from

the data of sensors such as accelerometers and

magnetometers using the DCM algorithm based on the

Euler angles of pitch, roll, and yaw to evaluate the ability

of anatomical joints and limbs. The calculated signals are

stored on a cloud server to enable therapists and other

practitioners to track and assist the rehabilitation of

patients.

3.4 Interactive Interface for Rehabilitation

The main interface for personal rehabilitation is depicted in

Fig. 6. During exercise, this interface provides functions

such as character model calibration, exercise selection,

guide video display, motion correction prompts, and fea-

ture angle recording. After the sensors are mounted and the

rehabilitation module is set up, the movement of the

character model is simulated in a mirrored manner. For

example, if the patient moves their left foot, the character

model moves its right foot. If the joint and limb movements

are incorrect, a yellow flashing light is triggered on the

calibrated model to prompt the patient to appropriately

correct their performance of the rehabilitation exercise.

The proposed system permits multiperson rehabilitation.

During multiperson rehabilitation, individual guide videos

on the reference exercise are played for each participant.

To track the individual abilities of joints and sensor read-

ings efficiently, the system setup for all individuals is

uniformly operated using the main console interface.

Fig. 5 Sensor-wearing positions corresponding to the joint points of

the character model

Fig. 6 Interactive interface for personal rehabilitation

1924 International Journal of Fuzzy Systems, Vol. 23, No. 7, October 2021

123



4 Experimental Results

4.1 Demographic Data

An experiment was conducted with eight healthy partici-

pants. The statistical data of the participants are presented

as means ± standard deviations in Table 1. The partici-

pants were aged 22–25 years, and their mean age was

23.63 ± 1.06 years. Their weights were between 50 and

73 kg, and their mean weight was 65.88 ± 7.95 kg. The

heights of the participants were between 160 and 178 cm,

and their mean height was 170.63 ± 6.25 cm.

4.2 Rehabilitation Exercise and Fuzzy Rules

To obtain quantitative and qualitative results for joint

movements, four joint movement exercises were con-

ducted: (a) the chest press, (b) the seated row, (c) torso

flexion, and (d) leg extension. In each rehabilitation exer-

cise, the participants were divided into groups of two

people and their joint angles were recorded. Table 2 pre-

sents a detailed description of the rehabilitation exercises,

and Fig. 7 illustrates the graphical posture of the exercises.

Figure 8 shows the proposed FIS for the sensor data. In

this system, the joint inputs are transformed into degrees of

membership by projecting the input numerical values into a

set of membership functions with predefined fuzzy sets.

The membership functions of joint angle difference are

defined as follows: 0�–25�, zero; 10�–35�, small; and 25�–
50�, large. The membership functions of angular velocity

difference are defined as follows: 0�–50�, zero; 25�–75�,
small; and 50�–100�, large. The membership functions of

joint angle difference and angular velocity difference are

depicted in Fig. 9. The fuzzy rule base for the rehabilitation

is presented in Table 3.

To determine the joint ability, many joint angle calcu-

lations were conducted during every exercise. The fol-

lowing measurements were conducted during the chest

press: eye level, left shoulder abduction, right shoulder

abduction, left elbow flexion, and right elbow flexion. The

following measurements were conducted during the seated

row: left shoulder flexion, right shoulder flexion, left elbow

flexion, and right elbow flexion. The following measure-

ments were conducted during torso flexion: left shoulder

flexion, right shoulder flexion, left elbow flexion, right

elbow flexion, and right knee flexion. Finally, the following

measurements were conducted during leg extension: eye

level, left hip extension, right hip extension, left knee

extension, and right knee extension. To display the func-

tionalities of the wearable sensor devices, the proposed

system considered right elbow joint movement for the

chest press exercise as an example. Each participant was

asked to wear a sensor-fitted jacket. Then, to determine

whether the joint angles determined from the sensor data

were within a reasonable measurement range from the

beginning to the end of each rehabilitation movement, the

postures of the participants were examined and set

according to the rehabilitation exercise setting, as dis-

played in Fig. 10.

The participants wore detection devices on their upper

or lower body according to the needs of different exercises

and then performed the exercises in front of the webcam.

Data were collected during the exercises to supplement the

joint angle data. The Kalman filtering was used to extract

important features and eliminate uncertainties (noises)

from the recorded sensor data. Figures 11 and 12 present

the raw sensor data and filtered signal for right elbow

flexion, respectively.

From the collected data, the joint angle difference and

angular velocity difference were calculated by comparing

the sensor data with a benchmark set by a therapist

according to the participants’ joint movement ability. The

blue, red, and yellow curves in Fig. 13a represent the actual

joint angular velocity, the reference joint angular velocity,

and the absolute difference between the actual and refer-

ence joint angular velocities, respectively. The blue, red,

and yellow curves in Fig. 13b represent the actual joint

angle, the reference joint angle, and the absolute difference

between the actual and reference joint angles, respectively.

Table 1 Demographic data of

the participants
Subjects Age Weight (kg) Height (cm) Gender

SA 24 50 178 Male

SB 25 64 165 Male

SC 23 72 178 Male

SD 24 72 168 Male

SE 22 71 172 Male

SF 23 73 174 Male

SG 23 60 160 Female

SH 25 65 170 Female

Mean ± SD 23.63 ± 1.06 65.88 ± 7.95 170.63 ± 6.25
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Rehabilitation movements are mainly affected by the

rhythm of exercise, which comprises a group of 10 eight-

beat counts. To focus on ability recovery rehabilitation, we

examined a 50-ms window before and after each extreme

angle value at the beginning and end of each rehabilitation

action. By fitting the angle difference and angular velocity

difference into the proposed FIS to calculate the rhythm

score, we obtained three to five scores for every 50-ms

window of exercise. For every exercise, we encountered 20

window intervals for 20 extreme values. We obtained 69

window interval scores, as presented in Table 4.

Table 2 Detailed descriptions of the joint exercises

Exercise Feature description

Chest press The body should be close to the back of the chair, and the arm should straighten to 0� when it is pushed. when it is lowered, the

arm should be kept at 90� as far as possible, and the angle between the arm and the shoulder should be between 45� and 60�
Seated row The body should be kept upright, with the angle between shoulder and arm between 0� and 15�, and the angle of arm bending

between 90� and 120�
Torso

flexion

When the body is bent, it should be 135� from the ground, the upper arm is 70� from the body, and the elbow joint is 0�. The head

should not be too low or too high when bending, and the posture should be bilaterally symmetrical

Leg

extension

When stretching the legs, start with the knee joint at 90�, and raise the saddle pads to make the knees straight. The angle of the

knee joint can be greater than 90�, but not less than 90�

Fig. 7 Postures of the conducted rehabilitation exercises

Fig. 8 FIS for the sensor data

Fig. 9 Membership functions of the joint angle difference and

angular velocity difference

Table 3 Fuzzy rule base *Dif_AG *Dif_AV

Zero Small Big

Zero FS HS MS

Small HS MS LS

Big MS LS LS

*Dif_AG difference angle,

*Dif_AV angular velocity dif-

ference, LS low score, MS
medium score, HS high score,

FS full score

Fig. 10 Posture for the chest press exercise
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The two highlighted scores in Table 4 represent the

scores obtained in different intervals for right elbow flex-

ion. For these scores, the output of the FIS is shown in

Fig. 14. Figure 14a indicates that the score of 83.65 has an

angle difference of 31.38 and an angular velocity differ-

ence of 8.51. Moreover, Fig. 14b indicates that the score of

90.01 has an angle difference of 24.45 and angular velocity

difference of 11.83.

Finally, the average output for right elbow flexion was

calculated from Table 4 (average score of 86.46).

Table 5 presents the scores obtained by participant SA in

the different rehabilitation exercises (chest press, seated

row, torso flexion, and leg extension). Based on his per-

formance, leg extension scores for the left and right knees

were slightly lower than his scores for other rehabilitation

exercises. The scores obtained by participant SA indicate

that he should take good care of his knee and focus more on

knee rehabilitation. Moreover, from Fig. 15, we could

predict the joint abilities of participant SA in a precise

manner. For instance, the results obtained in the chest press

indicated that the left shoulder abduction of participant SA

was superior to his right shoulder abduction. Moreover, the

left elbow flexion of participant SA was superior to his

right elbow flexion. In the seated row and torso flexion

exercises, the left shoulder flexion of participant SA was

weaker than all the other joint movements. In the leg

extension exercise, the left knee of participant SA exhib-

ited higher extension than his right knee did. Thus, we

could verify the joint movement ability using data collected

during the different rehabilitation exercises.

Furthermore, to compare the joint actions and abilities

of different individuals and groups, we used four rehabil-

itation machines. Initially, each machine was used to per-

form a rehabilitation action scoring test with two

participants. After a participant completed their rehabili-

tation task on a machine, they performed further tasks on

the other machines. The scores of participants SA and SB

for the chest press conducted with the first rehabilitation

machine are presented in Table 6. Participant SA margin-

ally outperformed participant SB on left and right elbow

flexion, whereas participant SB outperformed participant

Fig. 11 Raw sensor data

Fig. 12 Kalman-filtered signal data

Fig. 13 Angular velocity and angle of the right elbow joint

Table 4 Participant SA’s

scores for right elbow flexion in

the chest press exercise

80.37 80.42 80.69 80.68 92.27 92.28 92.28 92.14 92.51 92.43

92.42 92.51 92.51 92.27 92.28 92.29 92.29 92.27 86.58 87.03

91.87 85.77 85.39 85.35 84.91 86.11 86.55 86.56 86.91 81.76

81.91 81.74 81.93 81.93 82.07 92.16 92.06 92.05 91.88 81.26

81.40 81.40 81.53 92.45 92.43 92.43 92.46 83.08 83.28 83.28

83.65 90.01 90.00 90.01 81.98 82.03 81.84 81.85 85.04 84.90

84.86 84.63 82.37 82.46 80.20 80.20 82.34 82.45 82.32

Average: 86.46

Fig. 14 FIS output score for right elbow flexion in the chest press

exercise
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SA on left and right shoulder abduction. The scores of

participants SC and SD for the seated row exercise con-

ducted with the second rehabilitation machine are pre-

sented in Table 7. In the aforementioned exercise,

participant SC exhibited superior left and right shoulder

flexion to participant SD, whereas participant SD exhibited

superior left and right elbow flexion to participant SC.

Table 8 presents the scores of participants SE and SF for

the torso flexion exercise conducted with the third reha-

bilitation machine. In this exercise, participant SE exhib-

ited superior performance to participant SF for all joint

actions except right knee flexion. This result indicated that

participant SE should be monitored for further exercise.

Finally, the scores of participants SG and SH for the leg

extension exercise conducted with the fourth rehabilitation

machine are presented in Table 9. In this exercise, partic-

ipant SG outperformed participant SH in left and right hip

extension as well as right knee extension. The joint ability

in other exercises can also be determined using the pro-

posed system. The proposed system can provide qualitative

and qualitative clinical rehabilitation suggestions by ana-

lyzing a person’s joint movement ability during a set of

rehabilitation exercises. Furthermore, the degrees of joint

actions are computed to quantify the range of motion.

Thus, effective rehabilitation management and accurate

diagnosis can be achieved according to the severity of the

injury and the disabling impairments faced by an

individual.

5 Discussion

Physical activity and exercise are a vital determinant of

functional capacity and health. Functional capacity and

health have immediate and long-term importance in the

prevention of disease and the improvement of the quality of

life for people of all ages. Individuals may experience a

decline in physical functions due to multiple health-related

variables, such as progressive physical impairment caused

by critical illness, injury, or surgery; the presence of

medical disorders that limit mobility and muscle dysfunc-

tion; and age-related changes. Many elderly people expe-

rience a decline in physical functions as well as an

increased prevalence of impairment and disability in their

everyday life. Most frailty impairments lead to various

medical issues, such as decreases in muscle mass strength,

joint movement, cognitive ability, cardiorespiratory

endurance, and postural control, as well as gait and mus-

culoskeletal disorder. These problems are associated with

mobility limitations, low gait speed, and a high risk of falls.

Evidence indicated that compared with elderly people with

high muscle strength, elderly people with low muscle

strength are 2.6 times more susceptible to severe mobility

limitations, are 4.3 times more susceptible to low gait

speed, and have a 2.1 times higher mortality risk [23].

The loss of muscle strength and decline of balance (due

to somatosensory issues) in elderly people cannot be

explained only by the characteristic presence of skeletal

muscle atrophy, neural sensory function, or the gravity

center and supporting base physiology of these people.

Therefore, the early recognition of physical impairment

Table 5 Scores obtained by participant SA in the four exercises

Chest press result

Eye level Left shoulder abduction Right shoulder abduction Left elbow flexion Right elbow flexion

95.86 81.84 81.47 87.43 86.46

Seated row result

Left shoulder flexion Right shoulder flexion Left elbow flexion Right elbow flexion

82.57 84.23 87.43 86.46

Torso flexion result

Left shoulder flexion Right shoulder flexion Left elbow flexion Right elbow flexion Right knee flexion

82.52 84.23 87.43 86.46 83.61

Leg extension result

Eye level Left hip extension Right hip extension Left knee extension Right knee extension

94.63 85.32 86.23 80.74 80.53
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and correctly timed rehabilitation interventions are essen-

tial for addressing the needs of an aging society. In addition

to the promotion of health, disease prevention, disease

treatment, and palliative care, rehabilitation is an essential

part of universal health coverage [24]. However, rehabili-

tation is generally conducted in hospitals by trained prac-

titioners or other qualified health professionals.

Rehabilitation facilities are not conveniently accessible to

older patients, especially those living in isolated areas.

Moreover, more than 50% of the people in some low- and

middle-income countries are estimated to have insufficient

access to the rehabilitation services they require. Existing

rehabilitation services in 60–70% of countries worldwide

have been disrupted due to the coronavirus disease 2019

pandemic [24]. Thus, in-home therapies have become a

popular option for those most in need of rehabilitation

services. Studies have used the Kinect device or motion

sensor inertial measurement units (IMUs) with dynamic

time warping (DTW) and fuzzy logic algorithms for the

recognition of therapeutic movements and diagnosis of

physical impairments. For instance, to assist patients in

home-based rehabilitation, Su et al. [25] and Gal et al. [26]

combined a Kinect-based system with the DTW algorithm

and fuzzy logic to detect joint movements, postures, and

motions in shoulder rehabilitation for physical impair-

ments. Furthermore, to assist patients with knee

osteoarthritis in self-rehabilitation at home, Chen et al. [27]

used three wearable sensors (i.e., triaxial accelerometers)

that were mounted on the chest, thigh, and shank of the

working leg. The system of Chen et al. used the collected

angle information as well as the time- and frequency-do-

main features of sensor signals to identify the type of

rehabilitation exercise. Moreover, hierarchical methods

were implemented to detect improper exercise movements

of the patient. Rybarczyk et al. [28] introduced a web-

based platform to conduct physical telerehabilitation for

patients who had undergone hip arthroplasty surgery.

A Kinect camera was used to capture the hip abduction and

trunk movements of the patient. The camera was connected

to the Django website to manage the data flow of the

patients. To develop an intelligent environment for con-

Fig. 15 Different exercises for joint movement rehabilitation

Table 6 Chest press results for participants SA and SB

Chest press Eye level Left shoulder abduction Right shoulder abduction Left elbow flexion Right elbow flexion

SA 95.86 81.84 81.47 87.43 86.46

SB 94.63 82.93 81.65 86.92 85.32

Table 7 Seated row results for

participants SC and SD
Seated row Left shoulder flexion Right shoulder flexion Left elbow flexion Right elbow flexion

SC 81.57 86.62 79.40 85.14

SD 78.66 84.71 82.55 86.57

Table 8 Torso flexion result for participants SE and SF

Torso flexion Left shoulder flexion Right shoulder flexion Left elbow flexion Right elbow flexion Right knee flexion

SE 79.16 81.34 84.77 84.38 87.91

SF 80.51 82.62 85.14 84.96 86.85
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ducting cognitive rehabilitation at home, Oliver et al. [29]

used an FIS with the VIbroTActile toolkit device to collect

expertise from a rehabilitation expert. Knee injury or sur-

gery is critical for the recovery of function and indepen-

dence. Bell et al. [30] used IMU motion tracking sensors

and an OptiTrack system to detect the joint angle of knee

motion during rehabilitation exercises. Chen et al. [31]

developed a home-based shoulder rehabilitation system

that comprised an IMU and a mobile app for patients and

physicians to trace and monitor shoulder mobility mea-

surements. However, unlike other studies that focused only

on certain types of rehabilitation, such as shoulder, knee,

hip, and cognitive rehabilitation, the present study devel-

oped a comprehensive approach for conducting and

examining various types of rehabilitation. To verify the

Table 9 Leg extension result for participants SG and SH

Leg extension Eye level Left hip extension Right hip extension Left knee extension Right knee extension

SG 91.52 88.23 88.91 83.51 83.61

SH 90.20 86.52 86.57 84.74 82.58

Table 10 Comparison of the proposed system with different existing rehabilitation systems

Existing

approaches

Algorithm Devices Rehabilitation GUI interface Additional features Rehabilitation

settings

Application

Su et al.

[25]

DTW, FL Kinect Shoulder rehabilitation Presented No Home Joints

movement

Gal et al.

[26]

DTW, FL Kinect Physical impairments Presented No Home Posture and

motion

range

Chen et al.

[27]

MF, FFT,

BC,

KNN

AG knee osteoarthritis

rehabilitation

No Error alarm Home Knee joint

movement

Rybarczyk

et al.

[28]

HMMs,

Django

Kinect Hip arthroplasty surgery Presented Identify the motion

errors

Home Hip abduction

and trunk

movement

Oliver

et al.

[29]

FIS VTD Cognitive rehabilitation Presented No Home Cognitive

Bell et al.

[30]

SMAA,

KF

IMU,

MA

Knee rehabilitation Presented with

visual

feedback

No Home Knee joint

movement

Chen et al.

[31]

ICC,

MWUT

IMU,

MA

Adhesive capsulitis (AC)

of the shoulder

Avatar

presented

No Home Shoulder

Our DCM,

KF,

FIS, OP

IMU,

MA

Power rehabilitation,

general rehabilitation

and elderly with

Parkinson disease

Avatar

presented,

alert with

wrong joint

movements

Individual guide video is

played for the

reference exercise for

each participant

Home and

hospital

Joints

movement,

range of

motion, and

posture

Audio instruction is

provided

Overcome joint

movements occlusion

DTW dynamic time warping, FL fuzzy logic, MF median filter, FFT fast Fourier transform, BC Bayesian classifier, KNN k-nearest neighbors,

HMMs hidden Markov models, FIS fuzzy inference system, SMAA static manual anatomical alignment, KF Kalman filter, ICC intraclass

correlation coefficient, MWUT Mann–Whitney U test, DCM direction cosine matrix, OP OpenPose, AG accelerometer and gyroscope, VTD
VIbroTActile toolkit device, IMU inertial measurement unit, MA mobile app
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feasibility of the proposed system, its features were com-

pared with those of existing systems (Table 10).

Rehabilitation actions help disabled people to regain

their movement ability; however, during closed-chain

rehabilitation exercises and rehabilitation exercises with

different posture orientations, the Kinect device may be

unable to overcome the issue caused by the occlusion of

joints and postures. Moreover, the calibration of repetitive

movement may be inaccurate for identifying human

skeletal features. Thus, evaluating certain types of reha-

bilitation exercises with the Kinect device is difficult. To

overcome the issues caused by the poor occlusion of joints

and postures, we integrated a self-designed IMU and

OpenPose to capture every joint segment and human

skeleton node. Furthermore, an FIS-based evaluation sys-

tem was developed to describe the values of attributes as

degrees of likelihood and address the vagueness and

uncertainties of joints movements. The joint inputs are

transformed into degrees of membership by projecting the

input numerical values into a set of membership functions

using fuzzy set inference. The degree of membership

acquired is a fuzzy representation of the extent to which the

linguistic value is satisfied and is used as a factor for

decision-making based on fuzzy rules of joint movement

ability.

The proposed system can be implemented in various

types of rehabilitation trials, such as power rehabilitation,

general rehabilitation, and rehabilitation for elderly people

with PD. The system conducts multicriteria decision-

making on the basis of joint movements and range of

motion, as presented in Fig. 15 and Tables 6, 7, 8 and 9.

Each patient’s joint movement ability is different, and

exercise recordings for one patient may not be suitable for

use by others even if they have the same disability of joint

movements. The proposed system can provide compre-

hensive and individual guidance according to each user’s

need.

The sensors connected to patients are virtually simulated

by a virtual-reality avatar, which precisely identifies and

indicates incorrect joint movements. Thus, the proposed

system provides an attractive virtual environment for

assessing the quality of rehabilitation movements in both

in-home and hospital settings.

6 Conclusions

In this study, we developed a system comprising a web

camera and IMUs that can capture angles of the human

posture and joints. An FIS was used to score patient

rehabilitation actions and prompt suggestions for joint

movement ability. The interactive interface overcomes the

problem of patients forgetting a rehabilitation movement

by reminding them intuitively to correct their posture and

joint angles to improve the quality of rehabilitation. The

proposed system not only allows physicians to access

quantitative reference data for improving rehabilitation

quality but also helps patients with PD to notice blind spots

and the occlusion of the joint angle using an inertial

sensing unit, without which they may ignore such spots and

occlusion during rehabilitation. Patients can follow the

standard rehabilitation videos provided by the proposed

system to perform rehabilitation exercises even at home,

and they can track their progress without the presence of a

medical practitioner.

In this study, joint angle simulation was performed for

students. In the future, we will include elderly individuals

to obtain more practical results.
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