Skip to main content
Log in

Multiple Performance Characteristics in the Application of Taguchi Fuzzy Method in Nanofluid/Ultrasonic Atomization Minimum Quantity Lubrication for Grinding Inconel 718 Alloys

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This study proposed the application of a nanofluid/ultrasonic atomization minimum quantity lubrication (MQL) method to grind Inconel 718 alloys. This is a grinding manufacturing innovation on lubrication technology. Multiwall carbon nanotubes (MWCNTs) and molybdenum disulfide (MoS2) nanoparticles were used as the nanofluid additives. Specifically, MWCNTs exhibit excellent thermophysical properties to effectively remove the heat generated by cutting and reduce the friction coefficient, and MoS2 has excellent lubricating properties to generate film layers with high wear resistance to protect the workpiece and avoid plowing. The parameters of multiple performance characteristics were optimized through applications of the Taguchi robust design method, grey relational analysis, and a fuzzy inference system. The control parameters comprised nozzle angle, distance of the nozzle, type of nanoparticle, fraction of the nanofluid, value of atomization, tangential velocity, table rate, and air pressure. Subsequently, the optimized result was compared with basefluid/ultrasonic atomization MQL and nanofluid MQL. The results revealed that nanofluid/ultrasonic atomization MQL yields the optimal grinding force ratio, grinding temperature, and surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Smith, G.T.: Cutting Tool Technology: Industrial Handbook. Springer, New York (2008)

    Google Scholar 

  2. Klocke, F., Eisenblätter, G.: Dry cutting. CIRP Ann. 46(2), 519–526 (1997). https://doi.org/10.1016/S0007-8506(07)60877-4

    Article  Google Scholar 

  3. Brinksmeier, E., Heinzel, C., Wittmann, M.: Friction, cooling and lubrication in grinding. CIRP Ann. 48(2), 581–598 (1999). https://doi.org/10.1016/S0007-8506(07)63236-3

    Article  Google Scholar 

  4. Brinksmeier, E., Walter, A., Janssen, R., Diersen, P.: Aspects of cooling lubrication reduction in machining advanced materials. Proc. Inst. Mech. Eng. B 213(8), 769–778 (1999). https://doi.org/10.1243/0954405991517209

    Article  Google Scholar 

  5. Tschätsch, I.H., Reichelt, D.I.A.: Cutting Fluids (Coolants and Lubricants). Applied Machining Technology, pp. 349–352. Springer, Berlin (2009)

    Book  Google Scholar 

  6. Weinert, K., Inasaki, I., Sutherland, J.W., Wakabayashi, T.: Dry machining and minimum quantity lubrication. CIRP Ann. 53(2), 511–537 (2004). https://doi.org/10.1016/S0007-8506(07)60027-4

    Article  Google Scholar 

  7. Huang, W.T., Liu, W.S., Wu, D.H.: Investigations into lubrication in grinding processes using MWCNTs nanofluids with ultrasonic-assisted dispersion. J. Cleaner Prod. 137, 1553–1559 (2016). https://doi.org/10.1016/j.jclepro.2016.06.038

    Article  Google Scholar 

  8. Huang, W.T., Wu, D.H., Lin, S.P., Liu, W.S.: A combined minimum quantity lubrication and MWCNT cutting fluid approach for SKD 11 end milling. Int. J. Adv. Manuf. 84, 1697–1704 (2016). https://doi.org/10.1007/s00170-015-7770-2

    Article  Google Scholar 

  9. Huang, W.T., Chen, J.T.: Application of intelligent modeling methods to enhance the effectiveness of nanofluid/micro lubrication in microdeep drilling holes machining. J. Adv. Mech. Des. Syst. Manuf. 14(7), 01–26 (2020). https://doi.org/10.1299/jamdsm.2020jamdsm0099

    Article  Google Scholar 

  10. Nath, C., Kapoor, S.G., DeVor, R.E., Srivastava, A.K., Iverson, J.: Design and evaluation of an atomization-based cutting fluid spray system in turning of titanium alloy. J. Manuf. Process. 14(4), 452–459 (2012). https://doi.org/10.1016/j.jmapro.2012.09.002

    Article  Google Scholar 

  11. Geoff, B., Chan, S.G., Yanqiao, Z., Martin, B.G.: Use of vegetable oil in water emulsion achieved through ultrasonic atomization as cutting fluids in micro-milling. J. Manuf. Process. 16(3), 405–413 (2014). https://doi.org/10.1016/j.jmapro.2014.04.005

    Article  Google Scholar 

  12. Rukosuyev, M., Goo, C.S., Jun, M.B.: Understanding the effects of the system parameters of an ultrasonic cutting fluid application system for micro-machining. J. Manuf. Process. 12(2), 92–98 (2010). https://doi.org/10.1016/j.jmapro.2010.06.002

    Article  Google Scholar 

  13. Huang, W.T., Liu, W.S., Tsai, J.T., Chou, J.H.: Multiple quality characteristics of nanofluid/ultrasonic atomization minimum quantity lubrication for grinding hardened mold steel. IEEE Trans. Auto. Sci. Eng. 15(3), 1065–1077 (2018). https://doi.org/10.1109/tase.2017.2726000

    Article  Google Scholar 

  14. Huang, W.T., Wu, D.H., Chen, J.T.: Robust design of using Nanofluid/MQL in micro-drilling. J. Adv. Manuf. Technol. 85, 2155–2161 (2016). https://doi.org/10.1007/s00170-015-7382-x

    Article  Google Scholar 

  15. Xu, J., Fang, H., Zeng, F., et al.: Robust observer design and fuzzy optimization for uncertain dynamic systems. Int. J. Fuzzy Syst. 21, 1511–1523 (2019). https://doi.org/10.1007/s40815-019-00646-6

    Article  MathSciNet  Google Scholar 

  16. Dong, F., Chen, Y.H., Zhao, X.: Optimal design of adaptive robust control for fuzzy swarm robot systems. Int. J. Fuzzy Syst. 21, 1059–1072 (2019). https://doi.org/10.1007/s40815-019-00626-w

    Article  MathSciNet  Google Scholar 

  17. Dourado, A.D., Lobato, F.S., Cavalini, A.A., et al.: Fuzzy reliability-based optimization for engineering system design. Int. J. Fuzzy Syst. 21, 1418–1429 (2019). https://doi.org/10.1007/s40815-019-00655-5

    Article  Google Scholar 

  18. Liu, J., Chen, Y., Zhou, J., et al.: An exact expected value-based method to prioritize engineering characteristics in fuzzy quality function deployment. Int. J. Fuzzy Syst. 18, 630–646 (2016). https://doi.org/10.1007/s40815-015-0118-0

    Article  MathSciNet  Google Scholar 

  19. Huang, W.T., Chou, F.I., Tsai, J.T., et al.: Application of graphene nanofluid/ultrasonic atomization MQL system in micromilling and development of optimal predictive model for SKH-9 high-speed steel using fuzzy-logic-based multi-objective design. Int. J. Fuzzy Syst. 22, 2101–2118 (2020). https://doi.org/10.1007/s40815-020-00930-w

    Article  Google Scholar 

  20. Jun, M.B., Joshi, S.S., DeVor, R.E., Kapoor, S.G.: An experimental evaluation of an atomization-based cutting fluid application system for micromachining. J. Manuf. Sci. Eng. Trans. ASME 130(3), 031118 (2008). https://doi.org/10.1115/1.2738961

    Article  Google Scholar 

  21. Edwards, E.R., Antunes, E.F., Botelho, E.C., Baldan, M.R., Corat, E.J.: Evaluation of residual iron in carbon nanotubes purified by acid treatments. Appl. Surf. Sci. 258(2), 641–648 (2011). https://doi.org/10.1016/j.apsusc.2011.07.032

    Article  Google Scholar 

  22. Gong, H., Kim, S.T., Lee, J.D., Yim, S.: Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes. Appl. Surf. Sci. 266, 219–224 (2013). https://doi.org/10.1016/j.apsusc.2012.11.152

    Article  Google Scholar 

  23. Liu, G., Li, X., Qin, B., Xing, D., Guo, Y., Fan, R.: Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol. Lett. 17, 961–966 (2004). https://doi.org/10.1007/s11249-004-8109-6

    Article  Google Scholar 

  24. Zhang, B.-S., Xu, B.-S., Xu, Y., Gao, F., Shi, P.-J., Wu, Y.-X.: CU nanoparticles effect on the tribological properties of hydrosilicate powders as lubricant additive for steel contacts. Tribol. Int. 44(7–8), 878–886 (2011). https://doi.org/10.1016/j.triboint.2011.03.002

    Article  Google Scholar 

  25. Rapoport, L., Leshchinsky, V., Lvovsky, M., Nepomnyashchy, O., Volovik, Y., Tenne, R.: Mechanism of friction of fullerenes. Ind. Lubr. Tribol. 54(4), 171–176 (2002). https://doi.org/10.1108/00368790210431727

    Article  Google Scholar 

  26. Rapoport, L., Nepomnyashchy, O., Lapsker, I., Verdyan, A., Moshkovich, A., Feldman, Y., Tenne, R.: Behavior of fullerene-like WS2 nanoparticles undersevere contact conditions. Wear 259(1–6), 703–707 (2005). https://doi.org/10.1016/j.wear.2005.01.009

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Science and Technology, Taiwan, R.O.C., under Grant Numbers MOST 109-2221-E-020-019-MY2. The authors also thank to Researchers Supporting Project number (Grant No. #NPUST-KMU-109-P009), NPUST-KMU JOINT RESEARCHPROJECT and the "Intelligent Manufacturing Research Center" (iMRC) from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan, R.O.C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Hsien Ho or Jyh-Horng Chou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, WT., Tsai, JT., Hsu, C.F. et al. Multiple Performance Characteristics in the Application of Taguchi Fuzzy Method in Nanofluid/Ultrasonic Atomization Minimum Quantity Lubrication for Grinding Inconel 718 Alloys. Int. J. Fuzzy Syst. 24, 294–309 (2022). https://doi.org/10.1007/s40815-021-01135-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01135-5

Keywords

Navigation