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Abstract

This article proposes a general gH-gradient efficient-direction method and aW-gH-gradient
efficient method for the optimization problems with interval-valued functions. The convergence
analysis and the step-wise algorithms of both the methods are presented. It is observed that the
W-gH-gradient efficient method converges linearly for a strongly convex interval-valued ob-
jective function. To develop the proposed methods and to study their convergence, the idea
of strong convexity and sequential criteria for gH-continuity of interval-valued function are
illustrated. In the sequel, a new definition of gH-differentiability for interval-valued func-
tions is also proposed. The new definition of gH-differentiability is described with the help
of a newly defined concept of linear interval-valued function. It is noticed that the proposed
gH-differentiability is superior to the existing ones. For a gH-differentiable interval-valued
function, the relation of convexity with the gH-gradient of an interval-valued function and an
optimality condition of an interval optimization problem are derived. For the derived optimal-
ity condition, a notion of efficient direction for interval-valued functions is introduced. The
idea of efficient direction is used to develop the proposed gradient methods. As an application
of the proposed methods, the least square problem for interval-valued data byW-gH-gradient
efficient method is solved. The proposed method for least square problems is illustrated by a
polynomial fitting and a logistic curve fitting.
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1. Introduction

Each area of science, engineering, management, economics, and other practices, uses op-
timization techniques extensively. Optimization techniques assist us to find the best under
specified circumstances. The optimization problems with interval-valued functions (IVFs),
known as interval optimization problems (IOPs), has become a significant research topic over
the last two decades due to inherent imprecise and uncertain events in different real-world
events. In this paper, we attempt to derive a technique for IOPs to capture its solution set. The
proposed method reduces to the steepest descent method for the optimization problems with
real-valued functions.

1.1. Literature Survey
The ordering and subtraction of intervals has always been a issue in pursuit of an optimal

solution for IOPs [25]. In order to deal with interval-valued data, Moore introduced interval
arithmetic [45, 46]. However, with the interval arithmetic in [45, 46], one cannot find the addi-
tive inverse of a nondegenerate interval (whose lower and upper limits are different), i.e., for a
nondegenerate interval A, there does not exist an interval B such that A ⊕ B = 0. Due to this
reason, Wu [58, 59, 60] used a new concept of difference of intervals, known as Hukuhara dif-
ference [31] for the difference of two nonempty, closed, bounded and convex subsets of a real
linear space. In spite of the fact that the Hukuhara difference for intervals satisfies A	HA = 0,
A	HB can be calculated only when the width of A is greater than equal to that of B. In order to
overcome this inefficiency of Hukuhara difference of intervals, the ‘nonstandard subtraction’,
introduced by Markov [43], has been used and named as generalized Hukuhara difference (gH-
difference) by Stefanini [50, 52]. The generalized Hukuhara difference can be calculated for
any pair of intervals and has the property that A	gH A = 0 [50].

In the ordering of intervals, as intervals are not linearly ordered in contrast to the real num-
bers, Ishibuchi and Tanaka [32] showed various partial ordering structures and solution con-
cepts for IOPs. They suggested a method to solve a linear IOP by converting it to a bi-objective
optimization problem, which is generalized by Chanas and Kuchuta [13]. For nonlinear IOPs,
Ghosh studied a Newton method [22] and a quasi-Newton method [23]. Interestingly, many
researchers proposed different types of algorithms to solve various types of practical IOPs,
for instance, see [14, 15, 17, 20, 38, 56, 57]. Recently, Ghosh et al. [28] introduced variable
ordering relations of intervals and proposed an algorithm to obtain the solutions to IOPs. How-
ever, research into the applicability of conventional optimization techniques for IOPs is still not
concentrated. More surprisingly, although the interplay between geometry and calculus yield
optimization techniques, the calculus for IVFs is not rigorously developed until now.

In the year of 2007, with the help of a Hausdorff metric between any two intervals, Wu [58]
illustrated the concept of continuity of an IVF. In the same article [58], based on the Hukuhara
difference, the concept of Hukuhara-differentiability (H-differentiability) of an IVF has been
proposed. Accordingly, the KKT optimality conditions for IOPs have been given in [58]. Fur-
ther, applying the concept of H-differentiability, Wu [58, 59, 60] studied various duality the-
ories of IOPs. Thereafter, showing the restrictiveness of H-differentiability, Chalco-Cano et
al. [11] developed the calculus of IVFs based on the modified concept of the gH-difference,
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known as generalized-Hukuhara differentiability (gH-differentiability). Chalco-Cano et al.
[10] and Ghosh et al. [26] also derived the KKT conditions and duality theories in the view of
gH-differentiability.

In the development of interval calculus, calculus for fuzzy-valued functions plays an impor-
tant role because intervals are particular fuzzy numbers with a special membership function.
In connection with fuzzy calculus, Bede and Gal [5] introduced generalized (Hukuhara-based)
differentiability; the paper motivated the search for a gH-difference for intervals and fuzzy
numbers (see [50, 51, 52]) and applications to fuzzy generalized Hukuhara differentiability (see
[6]). A recent contribution in this direction is the article by Stefanini and Arana-Jiménez [53]
which contains definitions of total, directional and partial gH-derivatives for multi-variable
interval- and fuzzy-valued functions.

In the existing literature on interval calculus, unlike the definition of differentiability of real-
valued functions, none of the existing approaches used the concept of a linear IVF to define the
differentiability of an IVF. Although similar to the definition of differentiability of real-valued
functions, the authors of [22] and [53] introduced the new definitions of gH-differentiability
for IVFs and studied the properties gH-differentiable IVFs. However, none of them also men-
tioned about the linear IVF and used the concept of linear IVF to define gH-differentiability
for IVFs.

Since the last two decades, with the development of the calculus of IVFs and theories
related to IOPs, many techniques, and their algorithmic implementations to obtain the efficient
solutions of various types of practical IOPs have been appeared, for instance, see almost all
the papers in the references. However, the majority of the methods are provided from the
perspective of conventional bi-objective optimization. Thus, to apply those techniques one
has to explicitly express an IVF F in terms of its real-valued lower f and upper f boundary
functions, which is quite restrictive. For example, in a general least square problem for interval-
valued data (see Section 6), one cannot easily express the interval-valued error function in terms
of its lower and upper boundary functions. The authors of [22, 25] have studied a parametric
form of IOPs and developed the theories and techniques to find efficient solutions to the IOPs
with the objective functions that can be parametrically presented. However, for the parametric
representation of an IVF one needs its explicit form which is often practically not possible, for
instance, consider the function E(β) in (20).

1.2. Motivation and Contribution of the Paper
The literature on IOPs shows that there is still no emphasis on the study of conventional

optimization strategies for IOPs. Surprisingly, the basic descent method is not yet developed
for IOPs. Further, to derive a technique for IOPs which is similar to the standard descent
method, we need to rigorously establish the notion of gH-differentiability concept for IVFs.
More importantly, it must be kept in mind that the derived technique must be applicable to
general IVFs regardless of whether or not

(i) the objective function can be expressed parametrically, or

(ii) the explicit form of the lower and upper function of the objective function can be found.
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After illustrating the concept of a linear IVF, this paper proposes a new definition of gH-
differentiability. It is shown that if an IVF is gH-differentiable at a point, its gH-gradient ex-
ists at that point. It is shown that the proposed definition of gH-differentiability is superior to
the existing ones (see Remark 8 for details). With the help of gH-gradient, a few characteriza-
tion results for a gH-differentiable convex IVF are derived. Also, several results related to the
gH-gradient of a strong convex gH-differentiable IVF are studied.

Further, with the help of the proposed gH-differentiability for IVFs, this article develops a
gradient descent method for interval optimization, namely a general gH-gradient efficient-di-
rection method for IOPs. Similar to the steepest descent method, a method is also proposed,
namedW-gradient efficient method, to obtain efficient solutions of IOPs. The main advantages
of the proposed methods are that one needs neither the explicit forms of upper and lower func-
tions of the objective function nor parametric forms of the corresponding IVFs of an IOP. It
is shown that theW-gradient efficient method for IOP converges linearly in the case of strong
convexity of the interval-valued objective function. In order to develop these methods, the no-
tion of efficient-direction for an IVF and its several characteristics are studied.

1.3. Delineation
The presentation sequence of the proposed work is the following. The next section covers

some basic terminologies and notions of intervals analysis followed by the convexity and a few
topics of differential calculus of IVFs. Also, the sequential criteria of gH-continuity of an IVF
is discussed in Section 2. The concept of a linear IVF, a new concept of gH-differentiability
of an IVF, and a few characterizations of a gH-differentiable convex IVF are given in Section
3. The concept of efficient solutions and an optimality condition of an IOP are discussed in
Section 4. In Section 5, a general gH-gradient efficient-direction method for IOPs and a W-
gradient efficient method for IOP are proposed. Their algorithmic implementations and the
convergence analysis are also studied in Section 5. The section 6 deals with the application of
W-gradient efficient method for IOPs in least square problems with interval data. Finally, in
Section 7, a few future directions of this study are given.

2. Preliminaries and Terminologies

This section provides some basic terminologies and notions on intervals followed by the con-
vexity and a few topics of differential calculus of IVFs.

2.1. Arithmetic of Intervals and their Dominance Relation
At first, this section describes the generalized concept of the difference of two intervals and the
ordering concepts of intervals. Along with these definitions, we use Moore’s interval addition
(⊕) multiplication (�) and division (�) [45, 46] throughout the paper.

Let the set of real numbers be denoted by R and the set of all closed and bounded intervals
be denoted by I(R). Throughout the article, the elements of I(R) are represented by bold
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capital letters A,B,C, . . .. To represent an element A ∈ I(R) in the interval form, the corre-
sponding small letter is used in the following way: A = [a, a. If a = a], then A is called a
degenerate interval.

It is to be mentioned that any singleton {p} of R can be represented by an interval P =
[p, p], where p = p = p. In particular,

0 = {0} = [0, 0] and 1 = {1} = [1, 1].

Remark 1. It is easy to check that the addition and multiplication of intervals are commutative,
the addition of intervals is associative, and

A	 B = A⊕ (−1)� B.

Since the property of subtraction of intervals cannot provide an additive inverse of a non-
degenerate interval, in this article, we use the gH-difference of intervals, which is defined as
follows.

Definition 2.1. (gH-difference of intervals [52]). Let A and B be two elements of I(R). The
gH-difference between A and B, denoted A	gH B, is defined by an interval C such that

A = B⊕ C or B = A	 C.

It is to be noted that for A = [a, a] and B =
[
b, b
]
,

A	gH B =
[
min{a− b, a− b},max{a− b, a− b}

]
.

Thus,
A	gH A = 0 and 0	gH A = (−1)� A.

Definition 2.2. (Algebraic operations on I(R)n). Let Ā = (A1,A2, . . . ,An)T and B̄ = (B1,
B2, . . . ,Bn)T be two elements of I(R)n. An algebraic operation ‘?’ between Ā and B̄, denoted
Ā ? B̄, is defined by

Ā ? B̄ = (A1 ? B1,A2 ? B2, . . . ,An ? Bn)T ,

where ? ∈ {⊕, 	, 	gH}.

Definition 2.3. (Dominance relation of interval [58]). For any two intervals A and B in I(R),

(i) if a ≤ b and a ≤ b, then B is said to be dominated by A and denoted by A � B;

(ii) if either a ≤ b and a < b or a < b and a ≤ b hold, then B is said to be strictly
dominated by A and denoted by A ≺ B;

(iii) if B is not dominated by A, then A � B and if B is not strictly dominated by A, then
A ⊀ B;

(iv) if A � B and B � A, then it will be said that none of A and B dominates the other, or
A and B are not comparable.
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One can note that Wu [58, 60] used the term ‘superior than’ to describe the dominance
relation between two intervals. However, in this article, we use the term ‘dominated by’ instead
of ‘superior than’.

Lemma 2.1. For two elements A and B of I(R),

(i) A � B⇐⇒ A	gH B � 0 and

(ii) A ⊀ B⇐⇒ A	gH B ⊀ 0.

Proof. See Appendix A.

Lemma 2.2. For an A ∈ I(R),

(i) 0 � A⇐⇒ (−1)� A � 0 and

(ii) 0 ⊀ A⇐⇒ (−1)� A ⊀ 0.

Proof. As 0 	gH A = (−1) � A, replacing A by 0 and B by A in Lemma 2.1, we get the
required results.

Definition 2.4. (Norm on I(R) [45]). For an A = [a, ā] in I(R), the function ‖.‖I(R) : I(R)→
R+, defined by

‖A‖I(R) = max{|a|, |ā|},

is a norm on I(R).

Definition 2.5. (Norm on I(R)n [46]). For an Ā = (A1,A2, . . . ,An)T in I(R)n, the function
‖·‖I(R)n : I(R)→ R+, defined by

‖Ā‖I(R)n =
n∑
i=1

‖Ai‖I(R)

is a norm on I(R)n.

In this article, although we use the notions ‘‖·‖I(R)’ and ‘‖·‖I(R)n’ to denote the norms on
I(R) and I(R)n, respectively, we simply use the notion ‘‖·‖’ to denote the usual Euclidean
norm on Rn.

2.2. Convexity and Basic Differential Calculus of Interval-valued Functions
Let X be a nonempty subset of Rn. An IVF F : X → I(R), for each argument point x ∈ X , is
presented by the ontic (see [19]) way:

F(x) =
[
f(x), f(x)

]
,

where f and f are real-valued functions on X . The functions f and f are called the lower and
the upper functions of F, respectively.
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Definition 2.6. (Convex IVF [58]). Let X ⊆ Rn be a convex set. An IVF F : X → I(R) is
said to be a convex function if for any two vectors x1 and x2 in X ,

F(λ1x1 + λ2x2) � λ1 � F(x1)⊕ λ2 � F(x2)

for all λ1, λ2 ∈ [0, 1] with λ1 + λ2 = 1.

Remark 2. (See [58]). F is convex if and only if f and f are convex.

Definition 2.7. (Strongly convex IVF). Let X be a nonempty convex subset of Rn. An IVF
F : X → I(R) is said to be strongly convex on X if there exists a convex IVF G : X → I(R)
and a σ > 0 such that

F(x) = G(x)⊕ 1

2
‖x‖2 � [σ, σ] for all x ∈ X .

Remark 3. It is to be observed that

F(x) = G(x)⊕ 1

2
‖x‖2 � [σ, σ]

implies [
g(x), g(x)

]
⊕ 1

2
‖x‖2 � [σ, σ] =

[
f(x), f(x)

]
or,
[
g(x) +

σ

2
‖x‖2, g(x) +

σ

2
‖x‖2

]
=
[
f(x), f(x)

]
or, g(x) = f(x)− σ

2
‖x‖2 and g(x) = f(x)− σ

2
‖x‖2.

Therefore,

F is strongly convex⇐⇒ G is convex
⇐⇒ g and g are convex, by Remark 2

⇐⇒ f and f are strongly convex.

Definition 2.8. (gH-continuity [22]). Let F be an IVF on a nonempty subset X of Rn. Let x̄
be an interior point of X and d ∈ Rn be such that x̄ + d ∈ X . The function F is said to be
continuous at x̄ if

lim
‖d‖→0

(F(x̄+ d)	gH F(x̄)) = 0.

Lemma 2.3. An IVF F on a nonempty subset X of Rn is gH-continuous if and only if f and
f are continuous.

Proof. See Appendix B.

Lemma 2.4. (Sequential criteria of gH-continuity). An IVF F on a nonempty subset X of Rn
is gH-continuous at a point x̄ ∈ X if and only if for every sequence {xn} in X converging to
x̄, the sequence {F(xn)} converges to F(x̄).
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Proof. See Appendix C.

Definition 2.9. (gH-Lipschitz continuous IVF [27]). Let X ⊆ Rn. An IVF F : X → I(R) is
said to be gH-Lipschitz continuous on X if there exists L > 0 such that

‖F(x)	gH F(y)‖I(R) ≤ L‖x− y‖ for all x, y ∈ X .

The constant L is called a Lipschitz constant.

Definition 2.10. (gH-derivative [51]). Let X ⊆ R. The gH-derivative of an IVF F : X →
I(R) at x̄ ∈ X is defined by

F′(x̄) = lim
d→0

F(x̄+ d)	gH F(x̄)

d
, provided the limit exists.

Remark 4. (See [9]). Let X be a nonempty subset of R. The gH-derivative of an IVF F :
X → I(R) at x̄ ∈ X exists if the derivatives of f and f at x̄ exist and

F′(x̄) =
[
min

{
f ′(x̄), f(x̄)

}
,max

{
f ′(x̄), f(x̄)

}]
.

However, the converse is not true.

Definition 2.11. (Partial gH-derivative [10]). Let F : X → I(R) be an IVF, where X is a
nonempty subset of Rn. Let Gi be defined by

Gi(xi) = F(x̄1, x̄2, . . . , x̄i−1, xi, x̄i+1, . . . , x̄n),

where x̄ = (x̄1, x̄2, . . . , x̄n)T ∈ X . If the gH-derivative of Gi exists at x̄i, then the i-th partial
gH-derivative of F at x̄, denoted DiF(x̄), is defined by

DiF(x̄) = G′i(x̄i) for all i = 1, 2, . . . , n.

Definition 2.12. (gH-gradient [10]). Let X be a nonempty subset of Rn. The gH-gradient of
an IVF F : X → I(R) at a point x̄ ∈ X , denoted∇F(x̄), is defined by

∇F(x̄) = (D1F(x̄), D2F(x̄), . . . , DnF(x̄))T .

It is to be mentioned that the authors of [10] used the notations ‘
(
∂F
∂xi

)
g

(x̄)’ and ‘∇gF(x̄)’

for i-th partial gH-derivative and gH-gradient of F at x̄, respectively. However, throughout the
article we simply use the notations ‘DiF(x̄)’ and ‘∇F(x̄)’ for i-th partial gH-derivative and
gH-gradient of F at x̄, respectively.

Definition 2.13. (gH-Lipschitz gradient [27]). An IVF F : X → I(R) is said to have gH-
Lipschitz gradient on X ⊆ Rn if there exists M > 0 such that

‖∇F(x)	gH ∇F(y)‖I(R)n ≤M‖x− y‖ for all x, y ∈ X .

Until now, the concepts of gH-continuity, gH-derivative, partial gH-derivative , gH-gradient
for IVF have been discussed. In the next section, we illustrate the idea of differentiability for
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IVFs. This idea differentiability for IVFs is used in the rest of the paper to develop the gradient
descent method of IOP.

3. Differentiability of Interval-valued Functions

Behind the concept of differentiability of a function the concept of linearity plays an important
role. Thus, before exploring the concept of differentiability of an IVF, we discuss the concept
of a linear IVF.

Definition 3.1. (Linear IVF). Let X be a linear subspace of Rn. A function F : X → I(R) is
said to be linear if

F(x) =
n⊕
i=1

xi � F(ei) for all x = (x1, x2, . . . , xn)T ∈ X ,

where ei is the i-th standard basis vector of Rn, i = 1, 2, . . . , n and ‘
⊕n

i=1’ denotes successive
addition of n number of intervals.

Remark 5. It is noteworthy that any IVF F : Rn → I(R) of the following form

F(x) =
n⊕
i=1

xi � Ai =
n⊕
i=1

xi � [ai, ai],

is a linear IVF.

Example 3.1. The IVF F(x) : R→ I(R), which is defined by

F(x) = [−3, 7]� x

is a linear IVF, which is depicted in Figure 1 by gray shaded region.

-2 -1 1 2
X

-15

-10

-5

5

10

15

Y

Figure 1: Interval-valued function of Example 3.1
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Remark 6. A linear IVF F on a linear subspace X of Rn satisfies the following conditions:

(i) F(λx) = λ� F(x) for all x ∈ X and for all λ ∈ R, and

(ii) for all x, y ∈ X , either
F(x+ y) = F(x)⊕ F(y)

or none of F(x)⊕ F(y) and F(x+ y) dominates the other.

For the proof, see Appendix D.

Definition 3.2. (gH-differentiability). Let X be a nonempty subset of Rn. An IVF F : X →
I(R) is said to be gH-differentiable at a point x̄ ∈ X if there exists a linear IVF Lx̄ : Rn →
I(R), an IVF E(F(x̄); d) and a δ > 0 such that

(F(x̄+ d)	gH F(x̄))	gH Lx̄(d) = ‖d‖ � E(F(x̄); d) for all d such that ‖d‖ < δ,

where E(F(x̄); d)→ 0 as ‖d‖ → 0.

If F is gH-differentiable at each point x̄ ∈ X , then F is said to be gH-differentiable on X .

Remark 7. It is to note from Definition 3.2 that

lim
‖d‖→0

[(F(x̄+ d)	gH F(x̄))	gH Lx̄(d)] = lim
‖d‖→0

E(F(x̄); d)

or, lim
‖d‖→0

(F(x̄+ d)	gH F(x̄))	gH lim
‖d‖→0

Lx̄(d) = 0

or, lim
‖d‖→0

(F(x̄+ d)	gH F(x̄)) = 0.

Thus, every gH-differentiable IVF F is gH-continuous.

The following lemma is same as Proposition 7 in [53]. However, in [53], Proposition 7
is proved by expressing an IVF F in terms of its midpoint-radius representation, i.e., F =[
f+f

2
,
f−f

2

]
, but in this article, to prove the following lemma we do not use the midpoint-radius

representation of an IVF.

Lemma 3.1. Let X be a nonempty subset of Rn. If an IVF F : X → I(R) is gH-differentiable
at x̄ ∈ X , then there exists a nonzero λ and δ > 0 such that

lim
λ→0

1
λ
� (F(x̄+ λh)	gH F(x̄)) = Lx̄(h) for all h ∈ Rn with |λ|‖h‖ < δ,

where Lx̄ is the linear IVF in Definition 3.2.

Proof. See Appendix E.

Theorem 3.1. Let an IVF F on a nonempty subset X of Rn be gH-differentiable at x̄ ∈ X .
Then, for each d = (d1, d2, . . . , dn)T ∈ Rn, the gH-gradient of F at x̄ exists and the linear IVF
Lx̄ in Definition 3.2 can be expressed by

Lx̄(d) = dT �∇F(x̄), (1)

10



where dT �∇F(x̄) =
⊕n

i=1 di �DiF(x̄).

Proof. See Appendix F.

The following example shows that the converse of Theorem 3.1 is not true.

Example 3.2. On R2, consider the following IVF:

F(x) = x1 � A1 ⊕ x2 � A2 = x1 � [−1, 1]⊕ x2 � [0, 2].

At x̄ = (0, 1),

F(x̄) = [0, 2], D1F(x̄) = A1 = [−1, 1], D2F(x̄) = A2 = [0, 2].

Therefore, the gH-gradient of F at x̄ = (0, 1) exists,∇F(x̄) = (A1,A2)T and

dT �∇F(x̄) = d1 � A1 ⊕ d2 � A2 = F(d) for any direction d ∈ R2.

However, F is not gH-differentiable at x̄ because at a direction d = (t,−t) with t > 0 and
‖d‖ < 1

2
, we obtain

F(x̄+ d) = F(t, 1− t) = [−t, 2− t], F(d) = F(t,−t) = [−3t, t],

and

lim
t→0+

1

‖d‖
�
(

(F(x̄+ d)	gH F(x̄))	gH dT �∇F(x̄)
)

= lim
t→0+

1√
2t
�
(

([−t, 2− t]	gH [0, 2])	gH [−3t, t]
)

= lim
t→0+

1√
2t
�
(
[−t,−t]	gH [−3t, t]

)
= lim

t→0+

1√
2t
� [−2t, 2t]

=
√

2� [−1, 1]

6= 0.

Remark 8. By Theorem 3.1, one can notice that the proposed Definition 3.2 of gH-differentiability
of this article implies the definition of gH-differentiability proposed in [50]. One may think
that the definition of gH-differentiability of this article is same as that in [22]. However, it can
be noted that the IVF Lx̄ in [22] has been considered with the following two properties:

(a) Lx̄(λx) = λ� Lx̄(x) for all λ ∈ R and x ∈ Rn and

(b) Lx̄(x+ y) = Lx̄(x)⊕ Lx̄(y) for all x, y ∈ Rn.

Thus, the IVF Lx̄ in [22] is a particular case of the proposed Lx̄ (see Definition 3.1). Hence,
the definition of gH-differentiability of this article is more general than the definition of [22].
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In the following example, we provide an IVF, which is gH-differentiable in the sense of this
article but not in the sense of [22].

Example 3.3. Consider the IVF F : R→ I(R) which is defined by

F(x) = [−1, 1]� x2, x ∈ R.

Thus,
f(x) = −x2 and f(x) = x2.

The gH-gradient of F is
∇F(x) = [−2, 2]� x.

Since both the real-valued functions f and f are differentiable at x̄ = 1, according to Remark
4 the IVF F is gH-differentiable at x̄ = 1. Hence, due to Theorem 3.1 of this article and
Theorem 1 of [22] there exists an IVF L1 such that

L1(h) = h�∇F(1)

= h� [−2, 2]� (1)

= [−2, 2]� h, where h ∈ R.

By Remark 5, L1 is a linear IVF. Hence, in the sense of the definition of gH-differentiability
of this article, F is gH-differentiable at x̄ = 1.

However, F is not gH-differentiable at x̄ = 1 in the sense of [22] because there exist some p,
q ∈ R such that

L1(p+ q) 6= L1(p)⊕ L1(q).

For instance, consider p = 3 and q = −2. Then,

L1(p+ q) = L1(1) = [−2, 2]

and
L1(p)⊕ L1(q) = [−9, 9]⊕ [−6, 6] = [−15, 15] 6= [−2, 2].

Remark 9. It may appear as if Theorem 3.1 of this article is same as Theorem 1 in [22] but we
have seen that Lx̄ in [22] is a particular case of Lx̄ of this article. Thus, it is clear that Theorem
3.1 of this article is the generalized version of Theorem 1 in [22].

Remark 10. It is noteworthy that although each linear real-valued function is differentiable in
its domain, Example 3.2 shows that there exists a few linear IVFs that are not gH-differentiable.

The following theorem provides a condition for a linear IVF to be gH-differentiable.

Theorem 3.2. Let X be a linear subspace of Rn and F be an IVF on X . For a given x̄ ∈ X , if
for any d ∈ Nδ(x̄) ∩ X ,

F(x̄+ d) = F(x̄)⊕ F(d),

where Nδ(x̄) is a δ-neighborhood of x̄, then F is gH-differentiable at x̄ ∈ X .
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Proof. See Appendix G.

Theorem 3.3. Let an IVF F on a nonempty open convex subset X of Rn be gH-differentiable.
If the function F is convex on X , then

(y − x)T �∇F(x) � F(y)	gH F(x) for all x, y ∈ X .

Proof. See Appendix H.

Theorem 3.4. Let an IVF F on a nonempty open convex subset X of Rn be gH-differentiable
on X . If the function F is convex on X , then

0 � (x− y)T �∇F(x)	gH (x− y)T �∇F(y) for all x, y ∈ X .

Proof. See Appendix I.

Remark 11. One may think that for a gH-differentiable IVF F on X ⊆ Rn,

(x−y)T �∇F(x)	gH (x−y)T �∇F(y) = (x−y)T �(∇F(x)	gH ∇F(y)) for all x, y ∈ X .

Unfortunately, it is not true in general even if F is convex on X . For instance, consider the
following IVF on R2:

F(x1, x2) = [1, 3]� x2
1 ⊕ [1, 4]� x2

2 = [x2
1 + x2

1, 3x2
1 + 4x2

2].

Since f(x1, x2) = x2
1 + x2

1 and f(x1, x2) = 3x2
1 + 4x2

2 are convex on R2, by Remark 2, F is
convex on R2.

The gH-gradient of F is

∇F(x) = ([2, 6]� x1, [2, 8]� x2)T .

Considering x = (2, 0) and y = (1, 1) we have

(x− y)T �∇F(x)	gH (x− y)T �∇F(y)

= (1,−1)� ([4, 12], [0, 0])T 	gH (1,−1)� ([2, 6], [2, 8])T

= [4, 12]⊕ [−6, 4]

= [−2, 16]

and

(x− y)T (∇F(x)	gH ∇F(y)) =(1,−1)�
(

([4, 12], [0, 0])T 	gH ([2, 6], [2, 8])T
)

= (1,−1)� ([2, 6], [−8,−2])T

= [4, 14]

6= [−2, 16].
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4. Interval Optimization Problem and its Efficient Solutions

This section explores the connection between solutions and the gH-derivatives of the following
IOP:

min
x∈X⊆Rn

F(x), (2)

where F : X → I(R) is a gH-differentiable function.

The concept of an efficient solution of the IOP (2) is defined below.

Definition 4.1. (Efficient solution [59]). A point x̄ ∈ X is called a global efficient solution of
the IOP (2) if F(x) ⊀ F(x̄) for all x( 6= x̄) ∈ X .

A point x̄ ∈ X is called a local efficient solution of IOP (2) if there exists a δ-neighborhood
Nδ(x̄) of x̄ such that

F(x) ⊀ F(x̄) for all x( 6= x̄) ∈ Nδ(x̄) ∩ X .

It is to mention that here that Wu [59] named the efficient solution of this article as non-
domiated solution. However, throughout this article, we follow Definition 4.1 for an efficient
solution, and in the rest of the article, by an efficient solution we mean a global efficient solu-
tion.

Since an IOP is a special case of a fuzzy optimization problem [24], the following theorem
can be considered as a corollary of Theorem 10 of [53]. Further, as differentiability of a func-
tion is a special case of Gâteaux differentiability, the following theorem can also be considered
as a corollary of Theorem 4.2 of [27]. In this article, as we are dealing with interval optimiza-
tion problems and gH-differentiability of interval-valued functions, we show the proof of the
following theorem to enhance the readability. However, we prove the following theorem with
a different approach than [27].

Theorem 4.1. (Optimality condition). Let F be a gH-differentiable IVF on a nonempty subset
X of Rn. If x̄ ∈ X is an efficient solution of the IOP (2), then

0 ∈ dT �∇F(x̄) for all d ∈ Rn.

Proof. Let x̄ ∈ X be an efficient solution of the IOP (2). Therefore, for all d ∈ Rn and λ ∈ R
so that x̄+ λd ∈ X , we have

F(x̄+ λd) ⊀ F(x̄)

or, F(x̄+ λd)	gH F(x̄) ⊀ 0, by Lemma 2.1
or, lim

λ→0+

1
λ
� (F(x̄+ λd)	gH F(x̄)) ⊀ 0

or, lim
λ→0

1
λ
� (F(x̄+ λd)	gH F(x̄)) ⊀ 0, since F is gH-differentiable on X .
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Therefore, by Lemma 3.1 and Theorem 3.1, we obtain

dT �∇F(x̄) ⊀ 0 for all d ∈ Rn. (3)

Replacing d by −d in (3) we obtain

(−d)T �∇F(x̄) ⊀ 0
or, (−1)� (dT �∇F(x̄)) ⊀ 0.

Thus, by Lemma 2.2,
0 ⊀ dT �∇F(x̄). (4)

By (3) and (4), we get 0 ∈ dT �∇F(x̄) for all d ∈ Rn.

Remark 12. It is noteworthy that the converse of Theorem 4.1 is not always true even if F is a
convex IVF. For instance, let us consider the following IOP:

min
x∈R

F(x), (5)

where

F(x) =

{
[0, 3]	gH [−1, 0]� x2, if − 1 ≤ x ≤ 1

[0, 2]⊕ [1, 1]� x2, otherwise.

-2 -1 1 2
X

1

2

3

4

5

6

Y

Figure 2: Interval-valued function of the IOP (5)

The graph of the IVF F is depicted in Figure 2 by the shaded region. From Figure 2 it is
clear that the IVF F is convex since its lower and upper functions are convex.

The gH-gradient of F is

∇F(x) =

{
[0, 2]� x, if − 1 ≤ x ≤ 1

[2, 2]� x, otherwise.
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Thus, at x = −1,

∇F(−1) = [−2, 0] =⇒ 0 ∈ d�∇F(−1) for all d ∈ R.

But it is notable that for 0 < h < 2,

F(−1 + h) = [(−1 + h)2, 3] ≺ [1, 3] = F(−1).

Therefore, although 0 ∈ d �∇F(−1) for all d ∈ R, −1 is not an efficient solution of the IOP
(5).

Corollary 4.1. Let F be a gH-differentiable IVF on a nonempty subset X of Rn. If x̄ ∈ X is
an efficient solution of the IOP (2), then

0 ∈ DiF(x̄) for each i ∈ {1, 2, . . . , n}.

Proof. Let x̄ ∈ X be an efficient solution of the IOP (2). According to Theorem 4.1, for all
d ∈ Rn, we have

0 ∈ dT �∇F(x̄) =
n⊕
i=1

di �DiF(x̄).

For each i ∈ {1, 2, . . . , n}, by considering d = ei, we obtain

0 ∈ DiF(x̄).

5. gH-gradient Efficient Methods for Interval Optimization Problem

This section develops gH-gradient efficient techniques to obtain the efficient solutions of the
IOP (2). In the conventional gradient descent technique, to find a minimizer, we move sequen-
tially along descent directions. Likewise, for IOP, to find an efficient solution we attempt to
move sequentially along efficient-directions, defined below.

Definition 5.1. (Efficient-direction). LetX ⊆ Rn. A direction d ∈ Rn is said to be an efficient-
direction of an IVF F : X → I(R) at x̄ ∈ X if there exists a δ > 0 such that

(i) F(x̄) � F(x̄+ λd) for all λ ∈ (0, δ),

(ii) there also exists a point x′ = x̄ + αd with α ∈ (0, δ) and a positive real number δ′ ≤ α
such that

F(x′ + λd) ⊀ F(x′) for all λ ∈ (−δ′, δ′).

The point x′ is known as an efficient point of F in the direction d.

In Figure 3, the points x̄ and x′, the direction d, and the nonnegative real numbers δ and δ′

of Definition 5.1 are illustrated on R2 plane (n = 2).
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Figure 3: Locations of x̄ and x′ in Definition 5.1

Remark 13. One may think that only the condition (i) of Definition 5.1 is sufficient to define
an efficient-direction. However, it is not true in general. Because, for A, B and C ∈ I(R),

A � B and B � C 6=⇒ A � C in general.

For instance, consider

A = [4, 6], B = [2, 10] and C = [5, 7].

We, then, see that
A � B and B � C but A ≺ C.

That is why the condition (ii) of Definition 5.1 is necessary to define an efficient direction.

Remark 14. For the degenerate case of the IVF F, i.e., for f(x) = f(x) = f(x) for all x ∈ X ,
Definition 5.1 reduces to the following. A direction d ∈ Rn is said to be an efficient-direction
of f if there exists a δ > 0 such that

f(x̄) > f(x̄+ λd) for all λ ∈ (0, δ).

Thus, an efficient direction for a degenerate IVF is a descent direction.

Theorem 5.1. Let F be a gH-differentiable IVF on a nonempty subset X of Rn. Then, every
direction d ∈ Rn that satisfies

0 � dT �∇F(x̄), (6)

is an efficient-direction of F at x̄ ∈ X , where the corresponding efficient point x′ is provided
by

x′ = x̄+ α′d with α′ = argeff
α∈R+

F(x̄+ αd),

where by ‘argeff’ of F(x̄+ αd), we mean a point α′ such that

F(x̄+ αd) ⊀ F(x̄+ α′d) for all α ∈ R.
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Proof. Let d ∈ Rn be a direction that satisfies the relation (6). Since F is gH-differentiable at
x̄ ∈ X , by Lemma 3.1 and Theorem 3.1, we have

lim
λ→0

1

λ
� (F(x̄+ λd)	gH F(x̄)) = dT �∇F(x̄),

which implies

lim
λ→0+

1

λ
� (F(x̄+ λd)	gH F(x̄)) = dT �∇F(x̄).

Due to the relation (6), the last equation yields

0 � lim
λ→0+

1

λ
� (F(x̄+ λd)	gH F(x̄)) . (7)

Therefore,

[0, 0] � lim
λ→0+

1

λ
�
[

min
{
f(x̄+ λd)− f(x̄), f(x̄+ λd)− f(x̄)

}
,

max
{
f(x̄+ λd)− f(x̄), f(x̄+ λd)− f(x̄)

} ]
or, [0, 0] �

[
min

{
lim
λ→0+

1

λ

(
f(x̄+ λd)− f(x̄)

)
, lim
λ→0+

1

λ

(
f(x̄+ λd)− f(x̄)

)}
,

max

{
lim
λ→0+

1

λ

(
f(x̄+ λd)− f(x̄)

)
, lim
λ→0+

1

λ

(
f(x̄+ λd)− f(x̄)

)}]
,

which implies

min

{
lim
λ→0+

1

λ

(
f(x̄+ λd)− f(x̄)

)
, lim
λ→0+

1

λ

(
f(x̄+ λd)− f(x̄)

)}
< 0. (8)

Thus, we have following two cases.

• Case 1. Let

min

{
lim
λ→0+

1

λ

(
f(x̄+ λd)− f(x̄)

)
, lim
λ→0+

1

λ

(
f(x̄+ λd)− f(x̄)

)}
= lim

λ→0+

1

λ

(
f(x̄+ λd)− f(x̄)

)
.

Then, by the equation (8), we obtain limλ→0+
1
λ

(
f(x̄+ λd)− f(x̄)

)
< 0. There-

fore, there exists a δ1 > 0 such that for all λ ∈ (0, δ1),

1

λ

(
f(x̄+ λd)− f(x̄)

)
< 0

or, f(x̄+ λd)− f(x̄) < 0

or, f(x̄+ λd) < f(x̄)

or,
[
f(x̄), f(x̄)

]
�
[
f(x̄+ λd), f(x̄+ λd)

]
.
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• Case 2. Let

min

{
lim
λ→0+

1

λ

(
f(x̄+ λd)− f(x̄)

)
, lim
λ→0+

1

λ

(
f(x̄+ λd)− f(x̄)

)}
= lim

λ→0+

1

λ

(
f(x̄+ λd)− f(x̄)

)
.

Then, by the equation (8), we get

lim
λ→0+

1

λ

(
f(x̄+ λd)− f(x̄)

)
< 0.

Thus, there exists a δ2 > 0 such that for λ ∈ (0, δ2),

1

λ

(
f(x̄+ λd)− f(x̄)

)
< 0

or, f(x̄+ λd)− f(x̄) < 0

or, f(x̄+ λd) < f(x̄)

or,
[
f(x̄), f(x̄)

]
�
[
f(x̄+ λd), f(x̄+ λd)

]
Choosing δ = min{δ1, δ2}, from Case 1 and Case 2, we see that for all λ ∈ (0, δ),[

f(x̄), f(x̄)
]
�
[
f(x̄+ λd), f(x̄+ λd)

]
or, F(x̄) � F(x̄+ λd).

Hence, d satisfies the condition (i) of Definition 5.1 at x̄.

Further, let us choose an α′ such that

α′ = argeff
α∈R+

F(x̄+ αd).

Therefore, there exists a δ̄ > 0 such that for all α ∈ (α′ − δ̄, α′ + δ̄),

F(x̄+ αd) ⊀ F(x̄+ α′d).

Considering λ = α− α′, we have

F(x̄+ α′d+ λd) ⊀ F(x̄+ α′d)

or, F(x′ + λd) ⊀ F(x′),

where x′ = x̄+ α′d. Choosing δ′ = min{α′, δ̄}, we have

F(x′ + λd) ⊀ F(x′) for all λ ∈ (−δ′, δ′).

Therefore, d satisfies the condition (ii) of Definition 5.1 at x̄. Hence, d is an efficient-direction
at x̄.
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Remark 15. A question may arise here: in the definition of efficient-direction (Definition 5.1),
whether or not the condition (i) can be replaced by

F(x̄+ λd) ≺ F(x̄) for all λ ∈ (0, δ)? (9)

To answer, we note that if we choose the relation (9) in place of the condition (i) of Definition
5.1, then in the same way of proving Theorem 5.1 it can be proved that any d ∈ Rn that satisfies

dT �∇F(x̄) ≺ 0 (10)

also holds the relation (9) and vice versa for a gH-differentiable IVF F . However, the relation
(6) is more general than the relation (10). Because there are some directions, along which there
exists an efficient solution of an IOP, satisfy the relation (6) but do not satisfy the relation (10).

For instance, consider the IOP:

min
x∈X

F(x) = [−1, 2]� x2
1 ⊕ [3, 4]� x2

2, (11)

where X = [−10, 10]× [−10, 10] ⊆ R2.

In what follows, we show that (x̄1, 0)T ∈ X is an efficient solution of the IOP (11) for any x̄1 ∈
[−10, 10]. On contrary, let there exist two nonzero numbers h1 and h2 with (x̄1 + h1, h2)T ∈ X
such that

F(x̄1 + h1, h2) ≺ F(x̄1, 0)

or, [−1, 2]� (x̄1 + h1)2 ⊕ [3, 4]h2
2 ≺ [−1, 2]� x̄2

1

or, [−x̄2
1 − 2x̄1h1 − h2

1 + 3h2
2, 2x

2
1 + 4x̄1h+ 2h2

1 + 4h2
2] ≺ [−x̄2

1, 2x̄
2
1].

This implies
−2x1h1 − h2

1 + 3h2
2 ≤ 0 and 4x1h1 + 2h2

1 + 4h2
2 ≤ 0.

Hence, h2
2 ≤ 0, which is not possible as h2 6= 0. So, there does not exist any x ∈ X , which

strictly dominates any (x̄1, 0)T ∈ X . Thus, (x̄1, 0)T is an efficient solution of the IOP (11).

Now we choose a point x̂ = (3, 2)T and two directions d′ = (1,−2)T and d′′ = (5,−2)T . We
also choose an α = 1. As

F(3, 0) = [−1, 2] ≺ [5, 10] = F(3, 2) = F(x̂),

x̂ is not an efficient solution of the IOP (11). But the points x′ = x̂ + αd′ = (4, 0)T and
x′′ = x̂+ αd′′ = (8, 0)T both are efficient solutions of the IOP (11). Therefore, both d′ and d′′

are efficient-directions of F at x̂. Further, as the gH-gradient of F is

∇F(x) = (D1F(x), D2F(x))T = ([−2, 4]� x1, [6, 8]� x2)T ,
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we have∇F(x̂) = ([−6, 12], [12, 16])T . Therefore,

d′ �∇F(x̂) = [−6, 12]⊕ [−32,−24] = [−38,−12]

=⇒ d′ �∇F(x̂) ≺ 0 and also, 0 � d′ �∇F(x̂).

Again,

d′′ �∇F(x̂) = [−30, 60]⊕ [−32,−24] = [−38, 36]

=⇒ 0 � d′′ �∇F(x̂)

Hence, it is clear that although both d′ and d′′ are efficient-directions of the IVF F at the point
x̂ and satisfy the relation (6) but only d′ satisfies the relation (10). So, the condition (i) of
Definition 5.1 is more general than the condition (10).

5.1. General gH-gradient Efficient-Direction Method for Interval Optimization Problems
To produce the efficient solutions of the IOP (2) we provide Algorithm 1. As Algorithm 1

(i) uses gH-gradient at every iterative step and

(ii) endeavors to find an efficient solution by sequentially moving along efficient-directions,

we name the method as general gH-gradient efficient-direction method. The term ‘general’
is due to the reason that we do not choose a special or a particular efficient-direction dk; any
general dk that satisfies 0 � dTk �∇F(xk) will lead to reaching at an efficient point.

Algorithm 1 General gH-gradient efficient-direction method for IOP
Require: Given the initial point x0 and the IVF F : X (⊆ Rn)→ I(R).

1: Set k = 0.
2: If 0 ∈ dT � ∇F(xk) for all d ∈ Rn, then Return xk as an efficient-solution and Stop.

Otherwise go to Step 3.
3: Find a dk such that 0 � dTk �∇F(xk) and an αk such that

αk = argeff
α∈R+

F(xk + αdk)

4: Calculate
xk+1 = xk + αkdk.

5: Set k ← k + 1 and go to Step 2.

In the next, we give the convergence analysis of the Algorithm 1. Towards the convergent
analysis, we need the following notions of the algorithmic map and the closed map regarding
IVFs.

Definition 5.2. (Algorithmic map [4]). Let X be a nonempty subset of Rn. An algorithmic
map A of an algorithm is a point-to-set map on its domain X which describes the iterating
process of the algorithm such that if the sequence {xk} is generated by the algorithm then
xk+1 ∈ A(xk).
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Remark 16. The map A : X → X that generates the sequence {xk} in Algorithm 1 with
F(xk) � F(xk+1) is an algorithmic map.

Definition 5.3. (Closed map [4]). A point-to-set map A from a nonempty subset X of Rn to a
subset Y of Rm is said to be closed at x ∈ X if for any sequences {xk} and {yk} such that

xk → x and yk → y, where xk ∈ X and yk ∈ A(xk),

we have y ∈ A(x).

Theorem 5.2. Let F : Rn → I(R) be an IVF on a nonempty open subset X of Rn and D be an
element of I(R+). Define a point-to-set map L : Rn×Rn → Rn by L(x, d) = {y : y = x+λ̄d}
for some λ̄ ∈ D. Let F(x + λd) ⊀ F(y) for each λ ∈ D and d 6= 0. If F is gH-continuous
at x and d 6= 0, then L is closed at (x, d).

Proof. Let {(xk, dk)} be a sequence such that (xk, dk)→ (x, d). Let {yk}, yk ∈ L(xk, dk), be
a sequence such that yk → y. To prove the theorem, we have to show that y ∈ L(x, d).

It is to note that there exists λk ∈ D such that yk = xk + λkdk for k = 1, 2, . . . , n. Since
d 6= 0, for large enough k we have dk 6= 0. Then, λk = ‖yk−xk‖

‖dk‖
.

Taking the limit as k → ∞ we have λk → ‖y−x‖
‖d‖ = λ̄, say. Hence, y = x + λ̄d. Further-

more, since λk ∈ D for each k and D is closed, λ̄ ∈ D.

Therefore, as λ ∈ D, F(xk +λdk) ⊀ F(yk) for all k, and F is gH-continuous, by Lemma
2.4, evidently, we have F(x+ λd) ⊀ F(y). Hence, y ∈ L(x, d) and so, L is closed.

Remark 17. As according to Theorem 5.2, the map L is closed, the composite mapA = L◦D
will be closed if the direction generating map D : Rn → Rn × Rn, defined by D(x) = (x, d),
is also closed.

Theorem 5.3. (Convergence of general gH-gradient efficient method for IOP). Let F be a
gH-differentiable IVF on a nonempty open subset X of Rn. Suppose Ω ⊆ X be the set of all
efficient points of F and A : X → X be an algorithmic map of Algorithm 1. Suppose that the
algorithm map A produces the sequence {xk}, which converges at x̄ ∈ X . Also, assume that
there exists M > 0 such that ‖dk‖ < M for all k. If d̄ is an accumulation point of dk, then
we have

0 ∈ d̄T �∇F(x̄). (12)

Proof. Since {dk} is bounded, there exists an index setK1 such that lim
k∈K1

dk = d̄ and lim
k∈K1

xk =

x̄. We have the following two cases.

• Case 1. If d̄ = 0. Then, (12) is trivial.
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• Case 2. If d̄ 6= 0. If possible, let us assume that the conclusion (12) is not true. Hence,

0 /∈ d̄T �∇F(x̄) =⇒ x̄ /∈ Ω.

Since, for k ∈ K1, xk → x̄, also xk+1 ∈ A(xk) and xk+1 → x̄, therefore, x̄ ∈ A(x̄).
AsA is closed at x̄ due to Remark 17. Thus, F(x̄) � F(x̄), which is a contradiction.
Hence, 0 ∈ d̄T �∇F(x̄).

5.2. W-gradient Method for Interval Optimization Problems
In this section, we develop a particular type of efficient-direction. Towards this, for two given
numbers w, w′ ∈ [0, 1] with w + w′ = 1, we define a mappingW : I(R)n → Rn by

W(A1,A2, . . . ,An) = (wa1 + w′a1, wa2 + w′a2, . . . , wan + w′an)T .

Remark 18. It is to observe that for any two elements Ā, B̄ in I(R)n,

W(Ā⊕ B̄) =W(Ā) +W(B̄).

Lemma 5.1. For an interval A = [a, a], (wa + w′a) � [a, a] ⊀ 0, where w, w′ ∈ [0, 1] with
w + w′ = 1.

Proof. For an interval A = [a, a], we have the following three cases.

• Case 1. If a ≥ 0 and a ≥ 0. Then, a(wa+ w′a) ≥ 0 and a(wa+ w′a) ≥ 0. Hence,

0 � (wa+ w′a)� [a, a] =⇒ (wa+ w′a)� [a, a] ⊀ 0.

• Case 2. If a < 0 and a ≤ 0. Then, a(wa+ w′a) ≥ 0 and a(wa+ w′a) ≥ 0. Hence,

0 � (wa+ w′a)� [a, a] =⇒ (wa+ w′a)� [a, a] ⊀ 0.

• Case 3. If a ≤ 0 and a > 0. Then, either (wa + w′a) = 0 or (wa + w′a) 6= 0. If
(wa+ w′a) = 0, we have

(wa+ w′a)� [a, a] = 0 =⇒ (wa+ w′a)� [a, a] ⊀ 0.

Further, if (wa+w′a) 6= 0, the terms a(wa+w′a) and a(wa+w′a) are alternative
in sign. So,

(wa+ w′a)� [a, a] ⊀ 0.

Theorem 5.4. Let X ⊆ Rn be a nonempty set and F(x) : X → I(R) be gH-differentiable at
a point x̄ ∈ X . Then, the direction −W(∇F(x̄)) is an efficient-direction of F at x̄, provided
0 6∈ DiF(x̄) for at least one i ∈ {1, 2, . . . , n}.

23



Proof. Let DiF(x̄) = Ai for each i ∈ {1, 2, . . . , n} and 0 6∈ Ai for at least one i. Thus,

(W(∇F(x̄)))T �∇F(x̄) =
n⊕
i=1

(wai + w′ai)� [ai, ai].

Let 0 6∈ Ai for i = j. Therefore, aj and aj both are either positive or negative. Thus, (waj +
w′aj) 6= 0, and hence (waj + w′aj) � [aj, aj] 6= 0. Therefore, according to the property of
interval addition we get

(W(∇F(x̄)))T �∇F(x̄) 6= 0. (13)

If possible, let (W(∇F(x̄)))T �∇F(x̄) ≺ 0. Hence, (wai + w′ai)� [ai, ai] ≺ 0 for at least
one i ∈ {1, 2, . . . , n}, which is not possible due to Lemma 5.1. Therefore,

(W(∇F(x̄)))T �∇F(x̄) ⊀ 0 =⇒ 0 ⊀ −(W(∇F(x̄)))T �∇F(x̄). (14)

By relations (13) and (14), we obtain

0 � −(W(∇F(x̄)))T �∇F(x̄).

Hence, by Theorem 5.1,−W(∇F(x̄)) is an efficient-direction of F at x̄, where the correspond-
ing efficient point x′, given by

x′ = x̄− α′W(∇F(x̄)) with α′ = argeff
α∈R+

F(x̄− αW(∇F(x̄))),

satisfies the condition (i) of Definition 5.1 at x̄.

Based on Theorem 5.4 and Corollary 4.1, Algorithm 1 is reduced to the following Algo-
rithm 2. As Algorithm 2 is a particular case of Algorithm 1, we name the method asW-gH-
gradient efficient-direction method. The letter ‘W’ is due to the reason that we use the mapping
W : I(R)n → Rn to generate efficient-direction at each iteration in Algorithm 2.

Algorithm 2W-gH-Gradient Method for IOP
Require: Give w ∈ [0, 1], the initial point x0 and the IVF F : X (⊆ Rn)→ I(R).

1: Set k = 0.
2: If 0 ∈ DiF(xk) for all i ∈ {1, 2, . . . , n}, then Return xk as an efficient-solution and Stop.

Otherwise go to Step 3.
3: Set dk = −W(∇F(xk)) and find an αk, where

αk = argeff
α∈R+

F(xk − αdk).

4: Calculate
xk+1 = xk + αkdk.

5: Set k ← k + 1 and go to Step 2.

Remark 19. It is to be mentioned that in Algorithm 2, for the degenerate case of the IVF F,
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i.e., for f(x) = f(x) = f(x) for all x ∈ X , the direction dk will be −∇f(xk) and step length
αk will be argminf(xk+αdk) at each iteration k, for any values of w, w′ ≥ 0 with w+w′ = 1
in the mappingW . Thus, in that case,W-gH-gradient efficient method is same as steepest de-
scent method.

Remark 20. At each iteration k in Algorithm 2, one may choose αk such that

αk ∈ {α | wa+ w′a = 0, where [a, a] = F′(xk + αdk)} , (15)

where F′(xk + αdk) is the gH-derivative of F(xk + αdk) with respect to α. But it is to be kept
in mind that (15) is a necessary condition to be αk an argeff of F(xk − αdk), not sufficient.

Remark 21. One question may arise: for a given pair of non-negative w and w′ with w+w′ =
1, if we consider the real-valued function wf(x) + w′f(x) corresponding to the IOP (2) and
apply the conventional steepest descent method, whether the obtained direction and step length
in each iteration are identical with those obtained in each iteration ofW-gH-gradient efficient
method?

The answer is yes only when

DiF(x) =

[
∂f(x)

∂xi
,
∂f(x)

∂xi

]
for all i ∈ {1, 2, . . . , n} at each x ∈ X ,

which is not true in general (see [11] for details).

Lemma 5.2. For two elements Ā and B̄ in I(R)n and a vector h ∈ Rn,

0 � hT �
(
Ā	gH B̄

)
=⇒

(
W
(
Ā
)
−W

(
B̄
))T

h ≥ 0.

Proof.

hT �
(
Ā	gH B̄

)
= hT �

(
(A1,A2, . . . ,An)T 	gH (B1,B2, . . . ,Bn)T

)
= hT � ((A1 	gH B1) , (A2 	gH B2) , . . . , (An 	gH Bn))T

=
n⊕
i=1

hi � (Ai 	gH Bi) .

According to Remark 1, without loss of generality, let us assume

n⊕
i=1

hi � (Ai 	gH Bi) =

p⊕
k=1

hk � (Ak 	gH Bk)⊕
n⊕

l=p+1

hl � (Al 	gH Bl)

=

p⊕
k=1

Ck ⊕
n⊕

l=p+1

Cl,
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where [ck, ck] = hk � (Ak 	gH Bk) =
[
(ak − bk)hk,

(
ak − bk

)
hk
]

for all k’s and [cl, cl] =

hl � (Al 	gH Bl) =
[(
al − bl

)
hl, (al − bl)hl

]
for all l’s. Thus,

0 � hT �
(
Ā	gH B̄

)
=⇒ 0 �

p⊕
k=1

[ck, ck]⊕
n⊕

l=p+1

[cl, cl]

=⇒ 0 �

[
p∑

k=1

ck +
n∑

l=p+1

cl,

p∑
k=1

ck +
n∑

l=p+1

cl

]

=⇒ 0 ≤
p∑

k=1

ck +
n∑

l=p+1

cl and 0 ≤
p∑

k=1

ck +
n∑

l=p+1

cl.

Therefore,

p∑
k=1

ck +
n∑

l=p+1

cl ≥
p∑

k=1

ck +
n∑

l=p+1

cl ≥ 0 and
p∑

k=1

ck +
n∑

l=p+1

cl ≥
p∑

k=1

ck +
n∑

l=p+1

cl ≥ 0

=⇒
p∑

k=1

(ak − bk)hk +
n∑

l=p+1

(al − bl)hl ≥ 0 and
p∑

k=1

(
ak − bk

)
hk +

n∑
l=p+1

(
al − bl

)
hl ≥ 0

=⇒
n∑
i=1

(ai − bi)hi ≥ 0 and
n∑
i=1

(
ai − bi

)
hi ≥ 0

=⇒w
n∑
i=1

(ai − bi)hi ≥ 0 and w′
n∑
i=1

(
ai − bi

)
hi ≥ 0

=⇒
n∑
i=1

w (ai − bi)hi + w′
(
ai − bi

)
hi ≥ 0

=⇒
(
W
(
Ā
)
−W

(
B̄
))T

h ≥ 0.

Lemma 5.3. If F is gH-differentiable IVF, then

‖W(∇F(x))−W(∇F(y))‖X ≤ ‖∇F(x)	gH ∇F(y)‖I(R)n for all x, y ∈ X . (16)

Proof. Let

∇F(x) = Ā = (A1,A2, . . . ,An)T = ([a1, a1], [a2, a2], . . . , [an, an])T

and
∇F(y) = B̄ = (B1,B2, . . . ,Bn)T =

(
[b1, b1], [b2, b2], . . . , [bn, bn]

)T
.

Therefore,

‖∇F(x)	gH ∇F(y)‖I(R)n = ‖(A1 	gH B1,A2 	gH B2, . . . ,An 	gH Bn)‖I(R)n
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= ‖A1 	gH B1‖I(R)+‖A2 	gH B2‖I(R) + · · ·+‖An 	gH Bn‖I(R).

We note that

W(∇F(x)) = (wa1 + w′a1, wa2 + w′a2, . . . , wan + w′an)T

and
W(∇F(y)) = (wb1 + w′b1, wb2 + w′b2, . . . , wbn + w′bn)T .

So,

‖W(∇F(x))−W(∇F(y))‖X
= ‖(w(a1 − b1) + w′(a1 − b1), w(a2 − b2) + w′(a2 − b2),

· · · , w(an − bn) + w′(an − bn))‖X
≤ |w(a1 − b1) + w′(a1 − b1)|+ |w(a2 − b2) + w′(a2 − b2)|

+ · · ·+ |w(an − bn) + w′(an − bn|
≤ max{|a1 − b1|, |a1 − b1|}+ max{|a2 − b2|, |a2 − b2|}

+ · · ·+ max{|an − bn|, |an − bn|}
= ‖A1 	gH B1‖I(R)+‖A2 	gH B2‖I(R) + · · ·+‖An 	gH Bn‖I(R)

= ‖∇F(x)	gH ∇F(y)‖I(R)n .

Lemma 5.4. Let F be gH-differentiable and a strongly convex IVF on a nonempty convex
subset X of Rn. Then, there exists a σ > 0 such that

(W(∇F(x))−W(∇F(y)))T (x− y) ≥ σ‖x− y‖2 for all x, y ∈ X .

Proof. Since F is strong convex on X , then there exists a convex IVF G on X such that

G(x)⊕ 1

2
‖x‖2 � [σ, σ] = F(x) for all x ∈ X .

where σ > 0. Therefore,

∇G(x)⊕ ([σx1, σx1], [σx2, σx2], . . . , [σxn, σxn])T = ∇F(x)

⇐⇒ W(∇G(x)) + σx =W(∇F(x)), by Remark 18.

This implies
W(∇G(x)) =W(∇F(x))− σx. (17)

Further, since F is gH-differentiable, G is gH-differentiable; as G is also convex IVF, by
Lemma 5.2 and Theorem 3.4, we have

(W(∇G(x))−W(∇G(y)))T (x− y) ≥ 0 for all x, y ∈ X .
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Then, from (17) we obtain

(W(∇F(x))−W(∇F(y))− σ(x− y))T (x− y) ≥ 0

=⇒ (W(∇F(x))−W(∇F(y)))T (x− y)− σ‖x− y‖2 ≥ 0

=⇒ (W(∇F(x))−W(∇F(y)))T (x− y) ≥ σ‖x− y‖2.

Lemma 5.5. If a gH-differentiable IVF F on a nonempty subset X of Rn has gH-Lipschitz
gradient, then for some L > 0 we have

‖W(∇F(x))−W(∇F(y))‖ ≤ L‖x− y‖ for all x, y ∈ X

Proof. Since F has gH-Lipschitz gradient, for some L > 0, we have

‖∇F(x)	gH ∇F(y)‖I(R) ≤ L‖x− y‖ for all x, y ∈ X .

By Lemma 5.3 and the last relation we obtain

‖W(∇F(x))−W(∇F(y))‖ ≤ L‖x− y‖ for all x, y ∈ X .

Lemma 5.6. If F is a strong convex and gH-differentiable IVF on a nonempty convex subset
X ofRn with gH-Lipschitz gradient, then for all x, y ∈ X , there exists a σ > 0 and an L > 0
such that

(W(∇F(x))−W(∇F(y))T (y − x) ≥ σ

L2
‖W(∇F(x))−W(∇F(y)‖2 for all x, y ∈ X .

Proof. Since F has gH-Lipschitz gradient, due to Lemma 5.5 we get

‖W(∇F(x))−W(∇F(y))‖ ≤ L‖x− y‖ for all x, y ∈ X .

By Lemma 5.4 and the last inequality, we obtain

(W(∇F(x))−W(∇F(y))T (y − x) ≥ σ

L2
‖W(∇F(x))−W(∇F(y)‖2 for all x, y ∈ X .

Theorem 5.5. (Linear convergence under strong convexity). Let X be a nonempty convex
subset of Rn. If F is a strong convex and gH-differentiable IVF with gH-Lipschitz gradient on
X . Then, there exists a σ > 0 and an L > 0 such that if x̄ ∈ X be an efficient solution of the
IOP (2), the mapping Hα(x) = x− αW(∇F(x)) with constant step size α ∈

[
0, 2σ

L2

]
satisfies

‖Hα(x)−Hα(x̄)‖ ≤ ‖x− x̄‖ for all x ∈ X .

Proof. Let F be strong convex and gH-differentiable IVF with gH-Lipschitz gradient on X .
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Therefore, for all x, y ∈ X , we have

‖Hα(x)−Hα(y)‖2

=
∥∥(x− αW(∇F(x))

)
−
(
y − αW(∇F(y))

)∥∥2

= ‖x− y‖2 − 2α(W(∇F(x))−W(∇F(y))T (x− y) + α2‖W(∇F(x))−W(∇F(y))‖2

≤ ‖x− y‖2 − 2ασ‖x− y‖2 + α2L2‖x− y‖2 by Lemma 5.4 and Lemma 5.6

≤ ‖x− y‖2 since α ∈
[
0,

2σ

L2

]
.

Taking y = x̄, we have ‖Hα(x) − Hα(x̄)‖ ≤ ‖x− x̄‖ for all x ∈ X . Hence, the W-gH-
gradient efficient method converges linearly.

5.3. Numerical Examples
Here we apply the proposed algorithm ofW-gH-gradient efficient method on the IOPs of the
following two examples and capture the efficient solutions of the IOPs.

Example 5.1. Consider the following IOP:

min
x∈[−3,7]

F(x) = [1, 2]� x2 ⊕ [−8, 0]� x⊕ [3, 25]. (18)

The gH-gradient of F is

∇F(x) = [2, 4]� x⊕ [−8, 0] for all x ∈ [−3, 7].

The graph of the IVF F is illustrated in the Figure 4 by the gray shaded region and the region
of the efficient solutions is marked by bold black line on x-axis. From Figure 4 it is clear that
each x ∈ [0, 4] is an efficient solution of the IOP (18).
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Figure 4: Interval-valued function and efficient solution of the IOP (18) in Example 5.1
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Since the IOP (18) has infinite number of efficient solutions, applyingW-gH-gradient ef-
ficient method for various w and w′, we obtain few of them, which are presented in Table 1.

Table 1: Output of Algorithm 2 to find efficient solutions of
IOP (18)

w w′ Initial Number of Efficient
point iterations solution

0 1
−2 22 0
−0.5 20 0
6 1 3

0.2 0.8
−2 3 0.24
−0.5 2 0.2719
6 1 1.9778

0.4 0.6
−2 2 0.2621
−0.5 1 0.1549
6 1 0.6875

0.5 0.5
−2 1 0.1333
−0.5 1 0.2424
6 2 0.3111

0.7 0.3
−2 1 0.7891
−0.5 1 0.4489
6 2 0.8051

0.9 0.1
−2 1 2.25
−0.5 1 0.7233
6 2 3.6968

As the IOP (18) in Example 5.1 has infinite number of efficient solutions, Table 1 shows
that the algorithm ofW-gH-gradient efficient method has stopped with different efficient so-
lutions for different combinations of w, w′ and initial points.

In the next example, we consider an IOP which has only one efficient solution and we show
that the algorithm of W-gH-gradient efficient method will stop at the efficient solution for
different combinations of w, w′ and initial points.

Example 5.2. Consider the following IOP:

min
x∈X⊆R2

F(x) = [2, 6]� (x1 − 2)2 ⊕ [5, 7]� (x2 − 3)2 ⊕ [5, 12], (19)
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where X = [0, 6]× [0, 6]. The gH-gradient of F is

∇F(x) = (D1F(x), D2F(x))T

= ([4, 12]� (x1 − 2), [10, 14]� (x2 − 3))T .

We show that x̄ = (2, 3)T is an efficient solution to IOP (19). On contrary, if possible, let there
exist two nonzero numbers h1 and h2 with 0 ≤ 2 + h1 ≤ 6 and 0 ≤ 3 + h2 ≤ 6 such that

F(2 + h1, 3 + h2) ≺ F(2, 3)

or, [2, 6]� h2
1 ⊕ [5, 7]� h2

2 ⊕ [5, 12] ≺ [5, 12]

or,
(
[2, 6]� h2

1 ⊕ [5, 7]� h2
2 ⊕ [5, 12]

)
	gH [5, 12] ≺ [0, 0]

or, [2h2
1 + 5h2

2, 6h
2
1 + 7h2

2] ≺ [0, 0],

which is not possible. Thus, there does not exist any x( 6= x̄) ∈ X such that F(x) ≺ F(x̄).
Hence, x̄ is an efficient solution of the IOP (19). Also, one can easily check that F(x̄) ≺ F(x).
Thus, x̄ is the only efficient solution of the IOP (19).

The IVF F is depicted in the Figure 5 by the gray shaded surface and the efficient solution is
pointed by black dot on xy-plane. The Figure 5 shows that x̄ is the only efficient solution of F
on X .

Figure 5: Interval-valued function and efficient solution of the IOP (19) in Example 5.2

From Table 2, we see that for every combination of w, w′ and initial point, the W-gH-
gradient efficient method has stopped at the efficient solution x̄ = (2, 3)T .

31



Table 2: Output of Algorithm 2 to find efficient solutions of
IOP (19)

w w′ Initial Number of Efficient
point iterations solution

0.1 0.9
(0, 6)T 30

(2, 3)T(5, 2)T 21
(2.5, 2.5)T 13

0.3 0.7
(0, 6)T 16

(2, 3)T(5, 2)T 15
(2.5, 2.5)T 13

0.4 0.6
(0, 6)T 12

(2, 3)T(5, 2)T 10
(2.5, 2.5)T 9

0.6 0.4
(0, 6)T 10

(2, 3)T(5, 2)T 9
(2.5, 2.5)T 11

0.9 0.1
(0, 6)T 20

(2, 3)T(5, 2)T 19
(2.5, 2.5)T 18

1 0
(0, 6)T 25

(2, 3)T(5, 2)T 21
(2.5, 2.5)T 22

6. Application

This section applies theW-gH-gradient efficient method in solving the least square problems
for interval-valued data.

Suppose a set of n pairs of data (Xk,Yk) is given, where Yk ∈ I(R) is the corresponding
interval-valued output of Xk ∈ I(R)p for all k ∈ {1, 2, . . . , n}. We attempt to fit a function
H (·; β) : I(R)p → I(R), where β ∈ Rl is a parameter vector such that H

(
Xk; β̂

)
will be one

of the best approximations of Yk for all k ∈ {1, 2, . . . , n}. By ‘one of the best approximations’
we mean that H (X; β) gives a sum square error that is nondominated. Evidently, if β̂ is an
efficient solution of the following IOP:

min
β∈Rl

E(β) =
n⊕
k=1

(H (Xk; β)	gH Yk)� (H (Xk; β)	gH Yk) , (20)

then H
(

X; β̂
)

can be considered as an efficient choice of the approximating function H (X; β).
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It is noteworthy that the error function E and the function H (Xk; ·) are IVFs from Rl to I(R)
for all Xk. The partial gH-derivative of E with respect to βi is

DiE(β) = 2�
n⊕
k=1

(H (Xk; β)	gH Yk)�DiH (Xk; β) for all i ∈ {1, 2, . . . , l}.

Hence, by applying theW-gH-gradient efficient method on the IOP (20) one can easily obtain
an efficient parameter vector β̂ for the function H (·; β). For examples, we consider the fol-
lowing two types of fitting with interval-valued data.

6.1. Polynomial Fitting
Let us consider a set of 21 pairs of interval-valued data that are displayed in Table 3. We
attempt fit a polynomial function H1 (·; β) : I(R)→ I(R), defined by

H1 (X; β) = β1 � C⊕ β2 � X⊕ β3 � X2,

where C is a constant interval and β = (β1, β2, β3) ∈ R3. Therefore, for each k = 1, 2, . . . , 21,
the partial gH-derivative s of H1 (Xk; ·) with respect to β1, β2 and β3 are

D1H1 (Xk; β) = C, D2H1 (Xk; β) = Xk and D3H (Xk; β) = X2
k, respectively.

Table 3: Data for polynomial fitting

Xk Yk Xk Yk

[−1.99,−1.86] [1.21, 2.60] [−1.80,−1.66] [0.72, 2.00]
[−1.61,−1.54] [0.43, 1.67] [−1.48,−1.33] [0.20, 1.39]
[−1.29,−1.14] [0.01, 1.22] [−1.08,−0.96] [−0.28, 1.00]
[−0.89,−0.73] [−0.60, 0.60] [−0.68,−0.51] [−0.8, 0.34]
[−0.45,−0.29] [−0.95, 0.12] [−0.23,−0.03] [−1.12,−0.10]
[0.01, 0.15] [−1.24, 0.00] [0.19, 0.33] [−1.3, 0.01]
[0.39, 0.54] [−1.32, 0.02] [0.60, 0.74] [−1.25, 0.10]
[0.79, 0.93] [−1.05, 0.13] [0.98, 1.13] [−0.96, 0.20]
[1.19, 1.33] [−0.69, 0.40] [1.39, 1.54] [−0.34, 0.78]
[1.60, 1.74] [−0.03, 1.09] [1.79, 1.95] [0.24, 1.47]
[2.00, 2.15] [0.55, 1.80]

Considering C = [1.70, 12.00] and an initial β = (6,−8, 9)T , and applying Algorithm 2 on
the IOP (20) corresponding to the function H1 (·; β) with w = 0.3, we obtain the value of β̂
equal to (−0.0876,−0.2974, 0.5458)T in 24 iterations. With w = 0.5, we obtain the value of
β̂ equal to (−0.0896,−0.2777, 0.5352)T in 10 iterations.

33



In both the figures of Figure 6 show the comparison of the actual interval-valued output Yk

with the estimated output H1
(

Xk; β̂
)

of the interval-valued data Xk in polynomial fitting for
the values of w equal to 0.3 and 0.5, respectively, for k = 1, 2, . . . , 21. The common portions
of Yk with H1

(
Xk; β̂

)
are depicted by orange regions, where as the extended portions of Yk

and H1
(

Xk; β̂
)

are illustrated by red and yellow regions, respectively.
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(a) For w = 0.3
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(b) For w = 0.5

Figure 6: Comparison of the actual Yk with the estimated output H1
(

Xk; β̂
)

, by the polynomial fitting, of the
interval-valued data Xk in Table 3, k = 1, 2, . . . , 21

6.2. Logistic Fitting
Let us consider a set of 15 pairs of interval-valued data that are displayed in Table 4 and we fit
a logistic function H2 (·; β) : I(R)→ I(R) defined by

H2 (X; β) =
1

1⊕ e−(β1�C⊕β2�X)
,

where C is a constant interval and β = (β1, β2) ∈ R2. Thus, the partial gH-derivative s of
H2 (Xk; ·) with respect to β1 and β2 are

D1H2 (Xk; β) =
1

[1⊕ e−(β1�C⊕β2�Xk)]
2�C and D2H (Xk; β) =

1
[1⊕ e−(β1�C⊕β2�Xk)]

2�Xk,

respectively, for all k = 1, 2, . . . , 15.
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Table 4: Data for logistic fitting

Xk Yk Xk Yk

[−2.70,−2.55] [10−8, 13× 10−5] [−2.51,−2.35] [6× 10−8, 10−3]
[−2.32,−2.23] [3× 10−7, 0.003] [−2.19,−2.02] [10−6, 0.02]
[−2.00,−1.83] [6× 10−6, 0.078] [−1.79,−1.65] [3× 10−5, 0.301]
[−1.60,−1.42] [25× 10−5, 0.760] [−1.39,−1.20] [15× 10−4, 0.930]
[−1.16,−0.98] [0.012, 0.980] [−0.94,−0.72] [0.080, 0.990]
[−0.69,−0.50] [0.440, 0.998] [−0.46,−0.28] [0.880, 0.999]
[−0.24,−0.02] [0.981, 1.000] [0.02, 0.21] [0.997, 0.999]
[0.26, 0.44] [0.998, 1.000]

Taking C = [1.30, 3.40] and the initial value of β as (7,−4)T , and applying Algorithm 2
with w = 0.7 on the IOP (20) corresponding to the function H2 (·; β), we obtain the value of
β̂ as (3.3940, 8.5835)T in 10 iterations.

Figure 7 shows the comparison of the actual interval-valued output Yk with the estimated
output H2

(
Xk; β̂

)
of the interval-valued data Xk in logistic fitting for the value of w = 0.7,

k = 1, 2, . . . , 12. The common portions of Yk with H2
(

Xk; β̂
)

are illustrated by orange

regions. The extended portions of Yk and H2
(

Xk; β̂
)

are depicted by red and yellow regions,
respectively.
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Figure 7: Comparison of the actual Yk with the estimated output H2 (Xk;β) of the interval-valued data Xk in
logistic fitting for the data in Table 4, k = 1, 2, . . . , 15
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7. Conclusion and Future Directions

In this article, a general gH-gradient efficient-direction method and a W-gradient efficient
method for IOPs have been developed. The convergence analysis and the algorithmic imple-
mentations of both the methods have been presented. It has been shown that the W-gradient
efficient method converges linearly for a strongly convex interval-valued objective function.
In the sequel, a few topics of calculus and convexity of IVFs have been proposed which were
needed for the development of the methods. For a gH-differentiable IVFs, the relation between
convexity and the gradient of a gH-differentiable IVF and an optimality condition of an IOP
have been derived. Further, a notion of efficient-direction for IVFs has been introduced which
is used to develop the general gH-gradient efficient and W-gradient efficient methods. The
proposed W-gradient efficient method has been used to solve the least square problems with
interval-valued data. The application has been exemplified by a polynomial fitting and a logis-
tic curve fitting.

In connection with the proposed research, future research can evolve in several directions
as follows.

• One may attempt to develop an appropriate approach to find the step lengths αk’s in
Algorithms 1 and 2. Towards this, one can also concentrate on developing exact or
inexact line search techniques for IOPs.

• It is notable that in the definition of strongly convex IVFs (Definition 2.7), we have taken
a degenerate interval [σ, σ] for some σ > 0. One can attempt to make a generalization of
the used [σ, σ] to [σ1, σ2].

• Analysis of the proposed method for more flexible IVFs, especially for nonconvex IVFs
can be performed in the future.

• One may attempt to apply the proposed logistic regression on the classification problems
with interval-valued data.

• In the future, a rigorous error analysis of the red and yellow portions of Figure 6 and
Figure 7 can be performed.

• Future research can be made on applying the proposed methods in constrained least
square problems with interval-valued data.

• Applications of least square technique in practical problems can be performed.

• Also in the future, one can try to develop the proposed methods of this article based on
constrained interval analysis [40].
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Appendix A. Proof of Lemma 2.1

Proof. (i)

A � B⇐⇒ [a, a] � [b, b]

⇐⇒ a ≤ b and a ≤ b

⇐⇒ a− b ≤ 0 and a− b ≤ 0

⇐⇒
[
min

{
a− b, a− b

}
, max

{
a− b, a− b

}]
� 0

⇐⇒ A	gH B � 0.

(ii) According to the Definition 3.2, A = B⇐⇒ A	gH B = 0.
If A 6= B, then

A ⊀ B⇐⇒ [a, a] ⊀ [b, b]

⇐⇒ at least one of the inequalities a > b and a > b is true

⇐⇒ max
{
a− b, a− b

}
> 0

⇐⇒ A	gH B ⊀ 0.

Appendix B. Proof of Lemma 2.3

Proof. Let F be gH-continuous at a point x̄ of the set X . Thus, for any d ∈ Rn such that
x̄+ d ∈ X ,

lim
‖d‖→0

(F(x̄+ d)	gH F(x̄)) = 0,

which implies

lim
‖d‖→0

(
[f(x̄+ d), f(x̄+ d)]	gH [f(x̄), f(x̄)]

)
= [0, 0].

Hence, by the definition of gH-difference we have

lim
‖d‖→0

(f(x̄+ d)− f(x̄))→ 0 and lim
‖d‖→0

(f(x̄+ d)− f(x̄))→ 0,

i.e., f and f are continuous at x̄ ∈ X .

Conversely, let the functions f and f be continuous at x̄ ∈ X . If possible, let F be not
gH-continuous at x̄. Then, as ‖d‖ → 0, (F(x̄ + d) 	gH F(x̄)) 6→ 0. Therefore, as ‖d‖ → 0
at least one of the functions (f(x̄ + d) − f(x̄)) and (f(x̄ + d) − f(x̄)) does not tend to 0. So
it is clear that at least one of the functions f and f is not continuous at x̄. This contradicts the
assumption that the functions f and f both are continuous at x̄. Hence, F is gH-continuous at
x̄.
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Appendix C. Proof of Lemma 2.4

Proof. The result is followed by Lemma 2.3 and the fact that the real-valued functions f and
f are continuous at the point x̄ ∈ X if and only if for every sequence {xn} in X converging to
x̄, the sequences {f(xn)} and {f(xn)} converge to f(x̄) and f(x̄), respectively.

Appendix D. Proof for the problem in Remark 6

Proof. Due to Definition 3.1,

F(y) =
n⊕
i=1

yi � F(ei) for all y = (y1, y2, . . . , yn)T ∈ X .

Replacing y by λx, where λ ∈ R and x = (x1, x2, . . . , xn)T ∈ X , we have

F(λx) =
n⊕
i=1

λxi � F(ei) = λ�
n⊕
i=1

xi � F(ei) = λ� F(x)

Let us consider a pair of elements x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , yn)T of X . If the
corresponding xi and yi are of same sign for all i ∈ {1, 2, . . . , n}, then

F(x)⊕ F(y) =
n⊕
i=1

xi � F(ei)⊕
n⊕
i=1

yi � F(ei)

=
n⊕
i=1

(xi + yi)� F(ei), by Remark 1

= F(x+ y).

Let a few of the xi’s and the corresponding yi’s are of different signs. Without loss of gener-
ality, let the first p number of xi’s are of same signs with their corresponding yi’s, thereafter
consequtive q − p numbers of xi’s are nonnegative but corresponding yi’s are nonpositive, and
the last n − q numbers of xi’s are nonpositive but corresponding yi’s are nonnegative, where
p ≤ q ≤ n. Also, let

F(ei) = Ai = [ai, ai], for all ei, i ∈ {1, 2, . . . , n}

Then, we have

F(x)⊕ F(y) =

(
p⊕

k=1

xk � F(ek)⊕
q⊕

l=p+1

xl � F(el)⊕
n⊕

m=q+1

xm � F(em)

)

⊕

(
p⊕

k=1

yk � F(ek)⊕
q⊕

l=p+1

yl � F(el)⊕
n⊕

m=q+1

ym � F(em)

)
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=

p⊕
k=1

(xk + yk)� F(ek)⊕
q⊕

l=p+1

(xl � F(el)⊕ yl � F(el))

⊕
n⊕

m=q+1

(xm � F(em)⊕ ym � F(em))

= B⊕
q⊕

l=p+1

(xl � F(el)	 vl � F(el))⊕
n⊕

m=q+1

(ym � F(em)	 um � F(em)) ,

where B =

p⊕
k=1

(xk + yk)� F(ek), vl = −yl and um = −xm

for all l = p+ 1, p+ 2, . . . , q and m = q + 1, q + 2, . . . , r

= B⊕

[
q∑

l=p+1

(alxl − alvl) +
n∑

m=q+1

(amym − amum),

q∑
l=p+1

(alxl − alvl) +
n∑

m=q+1

(amym − amum)

]

= B⊕ C, where c =

q∑
l=p+1

(alxl − alvl) +
n∑

m=q+1

(amym − amum)

and c =

q∑
l=p+1

(alxl − alvl) +
n∑

m=q+1

(amym − amum).

Further, we note that

F(x+ y) =

p⊕
k=1

(xk + yk)� F(ek)⊕
q⊕

l=p+1

(xl + yl)� F(el)⊕
n⊕

m=q+1

(xm + ym)� F(em)

= B⊕
q⊕

l=p+1

(xl − vl)� F(el)⊕
n⊕

m=q+1

(ym − um)� F(em)

= B⊕
q⊕

l=p+1

(xl − vl)� [al, al]⊕
n⊕

m=q+1

(ym − um)� [am, am]

Again, without loss of generality, we let that among q − p numbers of xl − vl the first r − p
elements are nonnegative and rest are nonpositive, where p ≤ r ≤ q. Similarly, also we let
that among n − q numbers of ym − um the first s − q elements are nonnegative and rest are
nonpositive, where q ≤ s ≤ n. Then, we have F(x+ y) = B⊕ D, where

d =
r∑

l=p+1

al (xl − vl) +

q∑
l=r+1

al (xl − vl) +
s∑

m=q+1

al (ym − um) +
n∑

m=s+1

al (ym − um)
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and

d =
r∑

l=p+1

al (xl − vl) +

q∑
l=r+1

al (xl − vl) +
s∑

m=q+1

al (ym − um) +
n∑

m=s+1

al (ym − um) .

Since all xl, vl, ym, um are positive for all p+ 1 ≤ l ≤ q and q + 1 ≤ m ≤ n, we obtain

alxl − alxl ≤ al(xl − vl), alxl − alxl ≤ al(xl − vl),
amym − amum ≤ am(ym − um), amym − amum ≤ am(ym − um),

alxl − alxl ≥ al(xl − vl), alxl − alxl ≥ al(xl − vl),
amym − amum ≥ am(ym − um), and amym − amum ≥ am(ym − um).

Thus, we get

c ≤ d and c ≥ d,

b+ c ≤ b+ d and b+ c ≥ b+ d.

Therefore, either F(x) ⊕ F(y) = B ⊕ C and F(x + y) = B ⊕ D are equal or none of them
dominates the other for all x and y in X .

Appendix E. Proof of Lemma 3.1

Proof. Let F be gH-differentiable at x̄ ∈ X . By Definition 3.2, there exists a δ > 0 such that

(F(x̄+ d)	gH F(x̄))	gH Lx̄(d) = ‖d‖ � E(F(x̄); d) for all ‖d‖ < δ, (E.1)

where E(F(x̄); d)→ 0 as ‖d‖ → 0.

Considering d = λh for λ 6= 0 and h ∈ Rn with |λ|‖h‖ < δ, from the equation (E.1), we
obtain

1
λ
� [(F(x̄+ λh)	gH F(x̄))	gH Lx̄(λh)] = |λ|‖d‖

λ
� E(F(x̄);h)

or, 1
λ
� (F(x̄+ λh)	gH F(x̄))	gH 1

λ
� Lx̄(λh) = |λ|‖d‖

λ
� E(F(x̄);h)

or, lim
λ→0

1
λ
� (F(x̄+ λh)	gH F(x̄))	gH Lx̄(h) = 0, since Lx̄(λh) = λ� Lx̄(h).

Hence,
lim
λ→0

1
λ
� (F(x̄+ λh)	gH F(x̄)) = Lx̄(h). (E.2)

Appendix F. Proof of Theorem 3.1

Proof. If d = (0, 0, . . . , 0)T ∈ Rn, both the sides of the equation (1) become 0. Hence, the
equation (1) is trivially true for d = (0, 0, . . . , 0)T .
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Let us assume that d 6= (0, 0, . . . , 0)T . Since F is gH-differentiable at x̄, by Lemma 3.1 there
exists a δ > 0 such that

lim
λ→0

1
λ
� (F(x̄+ λh)	gH F(x̄)) = Lx̄(h), (F.1)

where d = λh with λ 6= 0, h ∈ Rn and |λ|‖h‖ < δ.

Taking h = ei, the i-th unit vector in the standard basis of Rn, from the equation (F.1) we
obtain

lim
λ→0

1
λ
� (F(x̄+ λei)	gH F(x̄)) = Lx̄(ei)

or, DiF(x̄) = Lx̄(ei).

Therefore, all the i-th partial gH-derivative DiF(x̄) of F at x̄ exist. Hence, the gradient of F at
x̄ exists.

According to Definition 3.1 of linear IVF, we get

Lx̄(d) = Lx̄(d1, d2, . . . , dn)

= d1 � Lx̄(e1)⊕ d2 � Lx̄(e2)⊕ · · · ⊕ dn � Lx̄(en)

=
n⊕
i=1

di �DiF(x̄) = dT �∇F(x̄).

Appendix G. Proof of Theorem 3.2

Proof. Consider an arbitrary x̄ ∈ X . Let for any d ∈ Nδ(x̄) ∩ X ,

F(x̄+ d) = F(x̄)⊕ F(d).

Since
∇F(x̄) = (F(e1),F(e2), . . . ,F(en))T ,

for any d ∈ Nδ(x̄) ∩ X , we obtain

dT �∇F(x̄) =
n⊕
i=1

di � F(ei) = F(d).

Therefore,

lim
‖d‖→0

1
‖d‖ �

(
(F(x̄+ d)	gH F(x̄))	gH dT �∇F(x̄)

)
= lim
‖d‖→0

1
‖d‖ �

(
(F(x̄)⊕ F(d)	gH F(x̄))	gH F(d)

)
= lim
‖d‖→0

1
‖d‖ �

( [
f(x̄) + f(d)− f(x̄), f(x̄) + f(d)− f(x̄)

]
	gH F(d)

)
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= lim
‖d‖→0

1
‖d‖ � (F(d)	gH F(d))

=0.

Hence, due to Definition 3.2 and Theorem 3.1, the linear IVF F is differentiable at x̄ ∈ X .

Appendix H. Proof of Theorem 3.3

Proof. Let the function F be convex on X . Then, for any x, y ∈ X and λ ∈ (0, 1], we get

F(x+ λ(y − x)) = F(λy + λ′x) � λ� F(y)⊕ λ′ � F(x), where λ′ = 1− λ.

Hence,

F(x+ λ(y − x))	gH F(x) �(λ� F(y)⊕ λ′ � F(x))	gH F(x)

=
[
λf(y) + λ′f(x), λf(y) + λ′f(x)]	gH [f(x), f(x)

]
=
[

min{λf(y) + λ′f(x)− f(x), λf(y) + λ′f(x)− f(x)},
max{λf(y) + λ′f(x)− f(x), λf(y) + λ′f(x)− f(x)}

]
=
[

min{λf(y)− λf(x), λf(y)− λf(x)},
max{λf(y)− λf(x), λf(y)− λf(x)}

]
=λ�

[
min{f(y)− f(x), f(y)− f(x)},
max{f(y)− f(x), f(y)− f(x)}

]
, since λ > 0

=λ� (F(y)	gH F(x)),

which implies
1

λ
� (F(x+ λ(y − x))	gH F(x)) � F(y)	gH F(x).

Since F is gH-differentiable at x ∈ X , taking λ→ 0+, by Theorem 3.1, we have

(y − x)T �∇F(x) � F(y)	gH F(x) for all x, y ∈ X .

Appendix I. Proof of Theorem 3.4

Proof. Let the function F be convex on X . As F is also gH-differentiable on X , by Theorem
3.3, for all x, y ∈ X we obtain

(y − x)T �∇F(x) � F(y)	gH F(x) (I.1)

and
(x− y)T �∇F(y) � F(x)	gH F(y). (I.2)
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For a given pair of points x, y ∈ X , let us suppose

F(x)	gH F(y) = [a, a], (x− y)T �∇F(x) = [b, b] and (x− y)T �∇F(y) = [c, c].

Thus, from (I.1) and (I.2), respectively, we have

[−b,−b] � [−a,−a] and [c, c] � [a, a]

=⇒ [a, a] � [b, b] and [−a,−a] � [−c,−c]
=⇒ a ≤ b, a ≤ b, − a ≤ − c and − a ≤ − c
=⇒ 0 ≤ b− c and 0 ≤ b− c
=⇒ 0 � [min{b− c, b− c},max{b− c, b− c}]
=⇒ 0 � (x− y)T �∇F(x)	gH (x− y)T �∇F(y).

Since x and y are arbitrary,

0 � (x− y)T �∇F(x)	gH (x− y)T �∇F(y) for all x, y ∈ X .
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(2019), Algebra of generalized Hukuhara differentiable interval-valued functions: review
and new properties. Fuzzy Sets and Systems, 375, 53–69.

[13] Chanas, S. and Kuchta, D. (1996), Multiobjective programming in optimization of in-
terval objective functions–a generalized approach, European Journal of Operational Re-
search, 94(3), 594–598.

[14] Chen, S. H., Wu, J. and Chen, Y. D. (2004), Interval optimization for uncertain structures,
Finite Elements in Analysis and Design, 40, 1379–1398.

[15] Chen, S. H. and Wu, J. (2004). Interval optimization of dynamic response for uncertain
structures with natural frequency constraints, Engineering Structures, 26(2), 221–232.

[16] Cheng, J., Liu, Z., Wu, Z., Tang, M. and Tan, J. (2016), Direct optimization of uncertain
structures based on degree of interval constraint violation, Computers and Structures 164,
83–94.

[17] Chinneck, J. W. and Ramadan, K. (2000), Linear programming with interval coefficients,
Journal of the Operational Research Society, 51(2), 209–220.

[18] Costa, T. M., Chalco-Cano, Y., Lodwick, W. A. and Silva, G. N. (2015), Generalized
interval vector spaces and interval optimization, Information Sciences, 311, 74–85.

44



[19] Couso, I. and Dubois, D. (2014). Statistical reasoning with set-valued information: Ontic
vs. epistemic views, International Journal of Approximate Reasoning, 55(7), 1502–1518.

[20] Csendes, T. (2001), New subinterval selection criteria for interval global optimization,
Journal of Global Optimization, 19, 307–327.

[21] Effati, S. and Pakdaman, M. (2012), Solving the intervalvalued linear fractional program-
ming problem, American Journal of Computational Mathematics, 2, 51–55.

[22] Ghosh, D. (2017), Newton method to obtain efficient solutions of the optimization prob-
lems with interval-valued objective functions, Journal of Applied Mathematics and Com-
puting, 53, 709–731.

[23] Ghosh, D. (2017), A quasi-newton method with rank-two update to solve interval op-
timization problems, International Journal of Applied and Computational Mathematics
3(3), 1719–1738.

[24] Ghosh, D. and Chakraborty, D. (2019), An Introduction to Analytical Fuzzy Plane Geom-
etry, Springer International Publishing.

[25] Ghosh, D., Ghosh, D., Bhuiya, S. K. and Patra, L. K. (2018), A saddle point charac-
terization of efficient solutions for interval optimization problems, Journal of Applied
Mathematics and Computing, 58(1–2), 193–217.

[26] Ghosh, D., Singh, A., Shukla, K. K. and Manchanda, K. (2019), Extended Karush-Kuhn-
Tucker condition for constrained interval optimization problems and its application in
support vector machines, Information Sciences, 504, 276–292.

[27] Ghosh, D., Chauhan, R. S., Mesiar, R. and Debnath, A. K. (2020), Generalized Hukuhara
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Optimality conditions for generalized differentiable interval-valued functions, Informa-
tion Sciences, 321, 136–146.

46
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