Skip to main content
Log in

Soft Subspace Fuzzy Clustering with Dimension Affinity Constraint

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

For high-dimensional data, the cluster structure often exists in a feature subset instead of the whole feature space. Soft subspace clustering can efficiently extract the important subspace by allocating a weight to each dimension on the basis of the contribution of this dimension to the cluster identification. However, this kind of method does not consider the correlations between data dimensions in the clustering process. In high-dimensional data, when two dimensions are closely correlated, they should have similar weight assignments, and vice versa. Inspired by the way of clustering with graph embedding technique, we present a novel soft subspace clustering algorithm with considering the correlations between data dimensions. In this method, a novel dimension affinity regularization term is included into the objective function to further highlight those correlated dimensions that are important to the formation of clusters and compress the feature subspaces. Moreover, the alternating direction method of multipliers is adopted to solve the linear optimization problem regarding the dimension weight lasso regularization. In addition, as an extension, the kernelized version is explored to address the non-linear data clustering. Experiments on the real-world datasets demonstrate the efficiency of the presented algorithms in comparison with the conventional clustering methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aggarwal, C.C, Yu, P.S.: Finding generalized projected clusters in high dimensional spaces. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 70–81 (2000)

  2. Aggarwal, C.C., Wolf, J.L., Yu, P.S., et al.: Fast algorithms for projected clustering. ACM SIGMoD Record 28(2), 61–72 (1999)

    Article  Google Scholar 

  3. Agrawal, R., Gehrke, J., Gunopulos, D., et al.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 94–105 (1998)

  4. Araujo, A.F., Antonino, V.O., Ponce-Guevara, K.L.: Self-organizing subspace clustering for high-dimensional and multi-view data. Neural Netw. 130, 253–268 (2020)

    Article  Google Scholar 

  5. Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Adv. Appl. Pattern Recognit. 22(1171), 203–239 (1981)

    MATH  Google Scholar 

  6. Bian, Z., Ishibuchi, H., Wang, S.: Joint learning of spectral clustering structure and fuzzy similarity matrix of data. IEEE Trans. Fuzzy Syst. 27(1), 31–44 (2019)

    Article  Google Scholar 

  7. Bo, D., Wang, X., Shi, C., et al.: Structural deep clustering network. Proc. Web Conf. 2020, 1400–1410 (2020)

    Google Scholar 

  8. Boyd, S., Parikh, N., Chu, E., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  9. Chan, E.Y., Ching, W.K., Ng, M.K., et al.: An optimization algorithm for clustering using weighted dissimilarity measures. Pattern Recognit. 37(5), 943–952 (2004)

    Article  Google Scholar 

  10. Cheng, C.H., Fu, A.W., Zhang, Y.: Entropy-based subspace clustering for mining numerical data. In: Proceedings of the ACM SIGKDD international conference on Knowledge discovery and data mining, pp 84–93 (1999)

  11. Deng, Z., Choi, K.S., Jiang, Y., et al.: A survey on soft subspace clustering. Inf. Sci. 348, 84–106 (2016)

    Article  MathSciNet  Google Scholar 

  12. Dua, D., Graff, C.: UCI machine learning repository. http://archive.ics.uci.edu/ml (2017)

  13. Gan, G., Wu, J.: A convergence theorem for the fuzzy subspace clustering (fsc) algorithm. Pattern Recognit. 41(6), 1939–1947 (2008)

    Article  Google Scholar 

  14. Gao, Y., Wang, Z., Li, H., et al.: Gaussian collaborative fuzzy c-means clustering. Int. J. Fuzzy Syst. 21, 1–17 (2021)

    Google Scholar 

  15. Graves, D., Pedrycz, W.: Kernel-based fuzzy clustering and fuzzy clustering: a comparative experimental study. Fuzzy Sets Syst. 161(4), 522–543 (2010)

    Article  MathSciNet  Google Scholar 

  16. Guo, L., Chen, L., Lu, X., et al.: Membership affinity lasso for fuzzy clustering. IEEE Trans. Fuzzy Syst. 28(2), 294–307 (2020)

    Article  Google Scholar 

  17. Hallac, D., Leskovec, J., Boyd, S.: Network lasso: Clustering and optimization in large graphs. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, pp 387–396 (2015)

  18. He, X., Cai, D., Shao, Y., et al.: Laplacian regularized gaussian mixture model for data clustering. IEEE Trans. Knowl. Data Eng. 23(9), 1406–1418 (2011)

    Article  Google Scholar 

  19. Huang, J., Ng, M., Rong, H., et al.: Automated variable weighting in k-means type clustering. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 657–668 (2005)

    Article  Google Scholar 

  20. Jin, L., Zhao, S., Zhang, C., et al.: Adaptive soft subspace clustering combining within-cluster and between-cluster information. J. Intell. Fuzzy Syst. 38(3), 3319–3330 (2020)

    Article  Google Scholar 

  21. Jing, L., Ng, M.K., Huang, J.Z.: An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Trans. Knowl. Data Eng. 19(8), 1026–1041 (2007)

    Article  Google Scholar 

  22. Lq, Li., Xl, Wang, Zx, Liu, et al.: A novel intuitionistic fuzzy clustering algorithm based on feature selection for multiple object tracking. Int. J. Fuzzy Syst. 21(5), 1613–1628 (2019)

    Article  Google Scholar 

  23. Li, X., Cui, G., Dong, Y.: Graph regularized non-negative low-rank matrix factorization for image clustering. IEEE Trans. Cybernet. 47(11), 3840–3853 (2017)

    Article  MathSciNet  Google Scholar 

  24. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley symposium on mathematical statistics and probability, pp 281–297 (1967)

  25. Mirzal, A.: Statistical analysis of microarray data clustering using nmf, spectral clustering, kmeans, and gmm. IEEE/ACM Transactions on Computational Biology and Bioinformatics pp 1–1. https://doi.org/10.1109/TCBB.2020.3025486 (2020)

  26. Modha, D.S., Spangler, W.S.: Feature weighting in k-means clustering. Mach. Learning 52(3), 217–237 (2003)

    Article  Google Scholar 

  27. Nagesh, H., Goil, S., Choudhary, A.: Mafia: Efficient and scalable subspace clustering for very large data sets. Technical Report 9906–010 (1999)

  28. Nie, F., Wang, X., Huang, H.: Clustering and projected clustering with adaptive neighbors. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, pp. 977–986 (2014)

  29. Procopiuc, C.M., Jones, M., Agarwal, P.K., et al.: A monte carlo algorithm for fast projective clustering. In: Proceedings of the ACM SIGMOD international conference on Management of data, pp. 418–427 (2002)

  30. Shen, H., Yang, J., Wang, S., et al.: Attribute weighted mercer kernel based fuzzy clustering algorithm for general non-spherical datasets. Soft Comput. 10(11), 1061–1073 (2006)

    Article  Google Scholar 

  31. Wang, J., Deng, Z., Choi, K.S., et al.: Distance metric learning for soft subspace clustering in composite kernel space. Pattern Recognit. 52, 113–134 (2016)

    Article  Google Scholar 

  32. Wang, X., Wang, Y., Wang, L.: Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recognit. Lett. 25(10), 1123–1132 (2004)

    Article  Google Scholar 

  33. Woo, K.G., Lee, J.H., Kim, M.H., et al.: Findit: a fast and intelligent subspace clustering algorithm using dimension voting. Inf. Softw. Technol. 46(4), 255–271 (2004)

    Article  Google Scholar 

  34. Wu, C., Liu, N.: Robust suppressed competitive picture fuzzy clustering driven by entropy. Int. J. Fuzzy Syst. 22(8), 2466–2492 (2020)

    Article  Google Scholar 

  35. Yan, S., Xu, D., Zhang, B., et al.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007)

    Article  Google Scholar 

  36. Yang, J., Wang, W., Wang, H., et al.: /spl delta/-clusters: capturing subspace correlation in a large data set. In: Proceedings the 18th international conference on data engineering, pp. 517–528 (2002)

  37. Yang, M.S., Nataliani, Y.: Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters. Pattern Recognit. 71, 45–59 (2017). https://doi.org/10.1016/j.patcog.2017.05.017

    Article  Google Scholar 

  38. Yang, M.S., Nataliani, Y.: A feature-reduction fuzzy clustering algorithm based on feature-weighted entropy. IEEE Trans. Fuzzy Syst. 26(2), 817–835 (2018)

    Article  Google Scholar 

  39. Ye, X., Zhao, J., Chen, Y., et al.: Bayesian adversarial spectral clustering with unknown cluster number. IEEE Trans. Image Process. 29, 8506–8518 (2020). https://doi.org/10.1109/TIP.2020.3016491

    Article  MathSciNet  Google Scholar 

  40. Zhao, Y.P., Chen, L., Chen, C.P.: Fuzzy clustering in cascaded feature space. Int. J. Fuzzy Syst. 21(7), 2155–2167 (2019)

    Article  Google Scholar 

  41. Zhou, J., Chen, C.L.P., Chen, L., et al.: A collaborative fuzzy clustering algorithm in distributed network environments. IEEE Trans. Fuzzy Syst. 22(6), 1443–1456 (2014)

    Article  Google Scholar 

  42. Zhou, J., Chen, L., Chen, C.P., et al.: Fuzzy clustering with the entropy of attribute weights. Neurocomputing 198, 125–134 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the National Natural Science Foundation of China under Grants with Nos. 61873324, 61903156, and 61872419, the Natural Science Foundation of Shandong Province under Grant with No. ZR2019MF040, the Higher Educational Science and Technology Program of Jinan City under Grant with No. 2020GXRC057, the University Innovation Team Project of Jinan under Grant No. 2019GXRC015, and the Key Science & Technology Innovation Project of Shandong Province under Grants Nos. 2019JZZY010324 and 2019JZZY010448.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Wang, R., Zhou, J. et al. Soft Subspace Fuzzy Clustering with Dimension Affinity Constraint. Int. J. Fuzzy Syst. 24, 2283–2301 (2022). https://doi.org/10.1007/s40815-022-01271-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01271-6

Keywords

Navigation