Skip to main content
Log in

A Novel Z-TOPSIS Method Based on Improved Distance Measure of Z-Numbers

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Decision-making is an activity based on human cognitive information. Z-numbers is a new concept that takes into account both the description of cognitive information and the reliability of the information. The distance measure of Z-numbers is an important subject in the decision-making process based on Z-information. However, the existing Z-number distance measure methods have problems of incomplete consideration and loss of information, which will lead to unreasonable results in decision-making. To this end, this paper proposes an improved distance measure of Z-numbers. The proposed method considers all aspects of the Z-number and preserves the original information as much as possible. It can overcome the shortcomings of existing methods. Some numerical examples are used to show the detailed calculation process and the advantages of the proposed method. To extend the classic Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS) to the Z-information environment, we suggested the Z-TOPSIS method based on the improved distance measure of Z-numbers. An example of supplier selection indicates the feasibility and effectiveness of the proposed Z-TOPSIS method. Illustrative and comparative analyses further demonstrate the flexibility and superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(1), 338–353 (1965)

    Article  Google Scholar 

  2. Gehrke, M., Walker, C., Walker, E.: Some comments on interval valued fuzzy sets! Structure 1, 2 (1996)

    MATH  Google Scholar 

  3. Mendel, J.M.: Type-2 fuzzy sets. In: Uncertain rule-based fuzzy systems, pp. 259–306. Springer, Cham (2017)

    Chapter  Google Scholar 

  4. Atanassov, K.T.: On intuitionistic fuzzy sets theory, vol. 283. Springer, Berlin (2012)

    Book  Google Scholar 

  5. Vicenç, T: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)

    MATH  Google Scholar 

  6. Gong, J.-W., Liu, H.-C., You, X.-Y., Linsen, Y.: An integrated multi-criteria decision making approach with linguistic hesitant fuzzy sets for e-learning website evaluation and selection. Appl. Soft Comput. 102, 107118 (2021)

    Article  Google Scholar 

  7. Celik, E., Gul, M., Aydin, N., Gumus, A.T., Guneri, A.F.: A comprehensive review of multi criteria decision making approaches based on interval type-2 fuzzy sets. Knowl.-Based Syst. 85, 329–341 (2015)

    Article  Google Scholar 

  8. Peng, J., Wang, J., Wang, J., Yang, L.-J., Xiao-hong, C.: An extension of ELECTRE to multi-criteria decision-making problems with multi-hesitant fuzzy sets. Inf. Sci. 307, 113–126 (2015)

    Article  MathSciNet  Google Scholar 

  9. Afful-Dadzie, E., Oplatkova, Z.K., Beltran Prieto, L.A.: Comparative state-of-the-art survey of classical fuzzy set and intuitionistic fuzzy sets in multi-criteria decision making. Int. J. Fuzzy Syst. 19(3), 726–738 (2017)

    Article  Google Scholar 

  10. Liu, H.-W., Wang, Guo-Jun.: Multi-criteria decision-making methods based on intuitionistic fuzzy sets. Eur. J. Oper. Res. 179(1), 220–233 (2007)

    Article  Google Scholar 

  11. Liu, Z., Xiao, F., Lin, C.T., Kang, B.H., Cao, Z.: A generalized golden rule representative value for multiple-criteria decision analysis. IEEE Trans. Syst. Man Cybern.: Syst. 51, 3193–3204 (2019)

    Article  Google Scholar 

  12. Cheng, R., Kang, B., Zhang, J.: A novel method to rank fuzzy numbers using the developed golden rule representative value. Appl. Intell. (2022). https://doi.org/10.1007/s10489-021-02965-4

    Article  Google Scholar 

  13. Zadeh, L.A.: A note on z-numbers. Inf. Sci. 181(14), 2923–2932 (2011)

    Article  Google Scholar 

  14. Aliev, R.A., Alizadeh, A.V., Huseynov, O.H.: The arithmetic of discrete z-numbers. Inf. Sci. 290, 134–155 (2015)

    Article  MathSciNet  Google Scholar 

  15. Aliev, R.A., Alizadeh, A.V., Huseynov, O.H., Jabbarova, K.I.: Z-number-based linear programming. Int. J. Intell. Syst. 30(5), 563–589 (2015)

    Article  Google Scholar 

  16. Aliev, R.A., Huseynov, O.H., Zeinalova, L.M.: The arithmetic of continuous z-numbers. Inf. Sci. 373, 441–460 (2016)

    Article  Google Scholar 

  17. Aliev, R.A., Pedrycz, W., Huseynov, O.H., Aliyev, R.R.: Eigensolutions of partially reliable decision preferences described by matrices of z-numbers. Int. J. Inf. Technol. Decis. Mak. 19(06), 1429–1450 (2020)

    Article  Google Scholar 

  18. Liu, Q., Tian, Y., Kang, B.: Derive knowledge of z-number from the perspective of Dempster-Shafer evidence theory. Eng. Appl. Artif. Intell. 85, 754–764 (2019)

    Article  Google Scholar 

  19. Liu, Q., Cui, H., Tian, Y., Kang, B.: On the negation of discrete z-numbers. Inf. Sci. 537, 18–29 (2020)

    Article  MathSciNet  Google Scholar 

  20. Tian, Y., Kang, B.: A modified method of generating z-number based on OWA weights and maximum entropy. Soft Comput. 24, 15841–15852 (2020)

    Article  Google Scholar 

  21. Kang, B., Zhang, P., Gao, Z., Chhipi-Shrestha, G., Hewage, K., Sadiq, R.: Environmental assessment under uncertainty using Dempster-Shafer theory and z-numbers. J. Ambient Intell. Humaniz. Comput. 11(5), 2041–2060 (2020)

    Article  Google Scholar 

  22. Kang, B., Deng, Y., Hewage, K., Sadiq, R.: A method of measuring uncertainty for z-number. IEEE Trans. Fuzzy Syst. 27(4), 731–738 (2018)

    Article  Google Scholar 

  23. Tian, Y., Liu, L., Mi, X., Kang, B.: Zslf: a new soft likelihood function based on z-numbers and its application in expert decision system. IEEE Trans. Fuzzy Syst. 29(8), 2283–2295 (2020)

    Article  Google Scholar 

  24. Kang, B., Wei, D., Li, Y., Deng, Y.: A method of converting z-number to classical fuzzy number. J. Inf. Comput. Sci. 9(3), 703–709 (2012)

    Google Scholar 

  25. Aliev, R.A., Zeinalova, L.M.: Decision making under z-information. In: Human-centric decision-making models for social sciences, pp. 233–252. Springer, Berlin (2014)

    Chapter  Google Scholar 

  26. Kang, B., Hu, Y., Deng, Y., Zhou, D.: A new methodology of multicriteria decision-making in supplier selection based on-numbers. Math. Probl. Eng. (2016). https://doi.org/10.1155/2016/8475987

    Article  MathSciNet  MATH  Google Scholar 

  27. Mohsen, Omidvar, Fereshteh, Nirumand: An extended VIKOR method based on entropy measure for the failure modes risk assessment-a case study of the geothermal power plant (GPP). Saf. Sci. 92, 160–172 (2017)

    Article  Google Scholar 

  28. Aboutorab, H., Saberi, M., Asadabadi, M.R., Hussain, O., Chang, E.: Zbwm: the z-number extension of best worst method and its application for supplier development. Expert Syst. Appl. 107, 115–125 (2018)

    Article  Google Scholar 

  29. Ahmad, N., Yaakob, A.M., Gegov, A., Kasim, M.M.: Integrating fuzzy AHP and z-TOPSIS for supplier selection in an automotive manufacturing company. AIP Conf. Proc. 2138(1), 030003 (2019)

    Article  Google Scholar 

  30. Krohling, R.A., Pacheco, A.G., dos Santos, G.A.: TODIM and TOPSIS with z-numbers. Front. Inf. Technol. Electron. Eng. 20(2), 283–291 (2019)

    Article  Google Scholar 

  31. Aliev, R.A., Huseynov, O.H., Serdaroglu, R.: Ranking of z-numbers and its application in decision making. Int. J. Inf. Technol. Decis. Mak. 15(06), 1503–1519 (2016)

    Article  Google Scholar 

  32. Wang, J.Q., Cao, Y.X., Zhang, H.Y.: Multi-criteria decision-making method based on distance measure and Choquet integral for linguistic z-numbers. Cogn. Comput. 9(6), 827–842 (2017)

    Article  Google Scholar 

  33. Shen, K.W., Wang, J.Q.: Z-Vikor method based on a new comprehensive weighted distance measure of z-number and its application. IEEE Trans. Fuzzy Syst. 26(6), 3232–3245 (2018)

    Article  Google Scholar 

  34. Mohamad, D., Ibrahim, S.Z.: Decision making procedure based on Jaccard similarity measure with z-numbers. Pertan. J. Sci. Technol. 25(2), 561–574 (2017)

    Google Scholar 

  35. Das, S., Garg, A., Pal, S.K., Maiti, J.: A weighted similarity measure between z-numbers and bow-tie quantification. IEEE Trans. Fuzzy Syst. 28(9), 2131–2142 (2019)

    Article  Google Scholar 

  36. Li, Y., Pelusi, D., Deng, Y., Cheong, K.H.: Relative entropy of z-numbers. Inf. Sci. 581, 1–17 (2021)

    Article  MathSciNet  Google Scholar 

  37. William, V.: Canonical representations of discrete fuzzy numbers. Fuzzy Sets Syst. 118(3), 457–466 (2001)

    Article  MathSciNet  Google Scholar 

  38. Yao, J.S., Chiang, J.: Inventory without backorder with fuzzy total cost and fuzzy storing cost defuzzified by centroid and signed distance. Eur. J. Oper. Res. 148(2), 401–409 (2003)

    Article  Google Scholar 

  39. Yao, J.S., Ouyang, L.Y., Chang, H.C.: Models for a fuzzy inventory of two replaceable merchandises without backorder based on the signed distance of fuzzy sets. Eur. J. Oper. Res. 150(3), 601–616 (2003)

    Article  MathSciNet  Google Scholar 

  40. William, V.: Some remarks on distances between fuzzy numbers. Fuzzy Sets Syst. 100(1–3), 353–365 (1998)

    MathSciNet  MATH  Google Scholar 

  41. Deza, M.-M., Deza, E.: Dictionary of distances. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  42. Kang, B., Deng, Y., Sadiq, R.: Total utility of z-number. Appl. Intell. 48(3), 703–729 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The work is partially supported by the Fund of the National Natural Science Foundation of China (Grant No. 61903307), China Postdoctoral Science Foundation (Grant No. 2020M683575), Chinese Universities Scientific Fund (Grant No. 2452018066), Key R&D Program of Shaanxi Province, China (Grant No. 2019NY-164) and the National College Students Innovation and Entrepreneurship Training Program (Grant Nos. 202110712143, 202110712146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingyi Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, R., Zhang, J. & Kang, B. A Novel Z-TOPSIS Method Based on Improved Distance Measure of Z-Numbers. Int. J. Fuzzy Syst. 24, 2813–2830 (2022). https://doi.org/10.1007/s40815-022-01297-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01297-w

Keywords

Navigation