Skip to main content
Log in

Fuzzy Command Filter Backstepping Control for Incommensurate Fractional-Order Systems via Composite Learning

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper investigates the command filter backstepping control of uncertain fractional-order generalized strict-feedback nonlinear systems with input nonlinearities and functional uncertainties based on a composite learning method. The main motivations are that the simplification of backstepping control by providing the fractional-order command filter to avoid the calculation of the derivatives of virtual controller functions, and parameters convergence can be achieved without the strict persistency of excitation condition via fractional-order composite learning laws. In the controller design, both tracking errors and prediction errors are used to update adjusted parameters. Moreover, the analytic computation of derivatives of virtual inputs is not required. A set of lemmas is provided to analyze the affect of the fractional-order command filter, and the parameter convergence can be achieved without persistent excitation condition based on the composite learning technique. The control performance can be improved from the asymptotic stability to the M-L stability in closed-loop system. Finally, simulation result verifies the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhou, J., Wen, C., Wang, W., Yang, F.: Adaptive backstepping control of nonlinear uncertain systems with quantized states. IEEE Trans. Autom. Control 64(11), 4756–4763 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sun, X., Yu, H., Yu, J., Liu, X.: Design and implementation of a novel adaptive backstepping control scheme for a PMSM with unknown load torque. IET Electr. Power Appl. 13(4), 445–455 (2019)

    Article  Google Scholar 

  3. Wei, Y., Sheng, D., Chen, Y., Wang, Y.: Fractional order chattering-free robust adaptive backstepping control technique. Nonlinear Dyn. 95(3), 2383–2394 (2019)

    Article  MATH  Google Scholar 

  4. Zhang, J., Gu, D., Deng, C., Wen, B.: Robust and adaptive backstepping control for hexacopter UAVS. IEEE Access 7, 163502–163514 (2019)

    Article  Google Scholar 

  5. Wang, B., Iwasaki, M., Yu, J.: Command filtered adaptive backstepping control for dual-motor servo systems with torque disturbance and uncertainties. IEEE Trans. Ind. Electron. 69(2), 1773–1781 (2021)

    Article  Google Scholar 

  6. Xie, H., Tang, Y., Shen, G., Li, X., Bai, D., Sa, Y.: Command filtered adaptive backstepping control for high-accuracy motion tracking of hydraulic systems with extended state observer. Proc. Inst. Mech. Eng. Part I 09596518211036615 (2021)

  7. Li, Y., Tong, S.: Command-filtered-based fuzzy adaptive control design for MIMO-switched nonstrict-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 25(3), 668–681 (2017)

    Article  Google Scholar 

  8. Dong, W., Farrell, J., Polycarpou, M., Sharma, M.: Command filtered adaptive backstepping. IEEE Trans. Control Syst. Technol. 20(3), 566–580 (2012)

    Article  MATH  Google Scholar 

  9. Braem, S., Bugg, J.M., Schmidt, J.R., Crump, M.J., Weissman, D.H., Notebaert, W., Egner, T.: Measuring adaptive control in conflict tasks. Trends Cogn. Sci. 23(9), 769–783 (2019)

    Article  Google Scholar 

  10. Pan, Y., Yu, H.: Composite learning from adaptive dynamic surface control. IEEE Trans. Autom. Control 61(9), 2603–2609 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pan, Y., Sun, T., Liu, Y., Yu, H.: Composite learning from adaptive backstepping neural network control. Neural Netw. 95, 134–142 (2017)

    Article  MATH  Google Scholar 

  12. Xu, B., Shou, Y.: Composite learning control of mimo systems with applications. IEEE Trans. Ind. Electron. 65(8), 6414–6424 (2018)

    Article  Google Scholar 

  13. Pan, Y., Yu, H.: Composite learning robot control with guaranteed parameter convergence. Automatica 89, 398–406 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pan, Y., Er, M., Liu, Y., Yu, H.: Composite learning fuzzy control of uncertain nonlinear systems. Int. J. Fuzzy Syst. 18(6), 990–998 (2016)

    Article  MathSciNet  Google Scholar 

  15. Huang, D., Yang, C., Pan, Y., Cheng, L.: Composite learning enhanced neural control for robot manipulator with output error constraints. IEEE Trans. Ind. Inf. 17(1), 209–218 (2019)

    Article  Google Scholar 

  16. Xu, B., Sun, F., Pan, Y., Chen, B.: Disturbance observer based composite learning fuzzy control of nonlinear systems with unknown dead zone. IEEE Trans. Syst. Man Cybern. 47(8), 1854–1862 (2016)

    Article  Google Scholar 

  17. Guo, K., Pan, Y., Zheng, D., Yu, H.: Composite learning control of robotic systems: a least squares modulated approach. Automatica 111, 108612 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, H., Pan, Y., Cao, J., Wang, H., Zhou, Y.: Adaptive neural network backstepping control of fractional-order nonlinear systems with actuator faults. IEEE Trans. Neural Netw. Learn. Syst. 31(12), 5166–5177 (2020)

    Article  MathSciNet  Google Scholar 

  19. Abu Arqub, O.: Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis. Fundam. Inform. 166(2), 111–137 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ahmad, S., Ullah, A., Al-Mdallal, Q.M., Khan, H., Shah, K., Khan, A.: Fractional order mathematical modeling of Covid-19 transmission. Chaos Solitons Fractals 139, 110256 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Singh, H., Srivastava, H., Hammouch, Z., Nisar, K.S.: Numerical simulation and stability analysis for the fractional-order dynamics of Covid-19. Results Phys. 20, 103722 (2021)

    Article  Google Scholar 

  22. Higazy, M.: Novel fractional order Sidarthe mathematical model of Covid-19 pandemic. Chaos Solitons Fractals 138, 110007 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, X.-J., Abdel-Aty, M., Cattani, C.: A new general fractional-order derivataive with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer. Therm. Sci. 23(3), 1677–1681 (2019)

    Article  Google Scholar 

  24. Ruiz-García, G., Hagras, H., Pomares, H., Ruiz, I.R.: Toward a fuzzy logic system based on general forms of interval type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 27(12), 2381–2395 (2019)

    Article  Google Scholar 

  25. Boulkroune, A., Saad, M., Farza, M.: Adaptive fuzzy controller for multivariable nonlinear state time-varying delay systems subject to input nonlinearities. Fuzzy Sets Syst. 164, 45–65 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Boulkroune, A., Saad, M., Chekireb, H.: Design of a fuzzy adaptive controller for MIMO nonlinear time-delay systems with unknown actuator nonlinearities and unknown control direction. Inf. Sci. 180(24), 5041–5059 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, H., Wang, J., Shi, P.: Output-feedback based sliding mode control for fuzzy systems with actuator saturation. IEEE Trans. Fuzzy Syst. 24(6), 1282–1293 (2016)

    Article  Google Scholar 

  28. Li, Y., Tong, S., Li, T.: Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation. IEEE Trans. Cybern. 45(10), 2299–2308 (2015)

    Article  Google Scholar 

  29. Yang, Q., Chen, M.: Robust control for uncertain linear system subject to input saturation. J. Appl. Math. 2014(1), 1–12 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Wang, Q., Sun, C.: Coordinated tracking of linear multiagent systems with input saturation and stochastic disturbances. ISA Trans. 71(1), 3–9 (2017)

    Article  MathSciNet  Google Scholar 

  31. Zhang, J., Xie, W., Shen, M., Huang, L.: State augmented feedback controller design approach for T-S fuzzy system with complex actuator saturations. Int. J. Control Autom. Syst. 15(5), 2395–2405 (2017)

    Article  Google Scholar 

  32. Li, Y., Tong, S., Li, T.: Hybrid fuzzy adaptive output feedback control design for uncertain MIMO nonlinear systems with time-varying delays and input saturation. IEEE Trans. Fuzzy Syst. 24(4), 841–853 (2016)

    Article  Google Scholar 

  33. Wang, M., Chen, B., Liu, X., Shi, P.: Adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear time-delay systems. Fuzzy Sets Syst. 159, 946–967 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, Y., Gong, M., Tong, S., Chen, C., Li, D.: Adaptive fuzzy output feedback control for a class of nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. 26(5), 2607–2617 (2018)

    Article  Google Scholar 

  35. Song, S., Park, J.H., Zhang, B., Song, X., Zhang, Z.: Adaptive command filtered neuro-fuzzy control design for fractional-order nonlinear systems with unknown control directions and input quantization. IEEE Trans. Syst. Man Cybern. 51(11), 7238–7249 (2020)

    Article  Google Scholar 

  36. Boulkroune, A., Boubellouta, A.: Fuzzy Control-Based Synchronization of Fractional-Order Chaotic Systems with Input Nonlinearities. Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems. IGI Global, Pennsylvania (2018)

    Book  MATH  Google Scholar 

  37. Liu, H., Li, S., Wang, H., Sun, Y.: Adaptive fuzzy control for a class of unknown fractional-order neural networks subject to input nonlinearities and dead-zones. Inf. Sci. 454, 30–45 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wei, M., Li, Y.-X., Tong, S.: Event-triggered adaptive neural control of fractional-order nonlinear systems with full-state constraints. Neurocomputing 412, 320–326 (2020)

    Article  Google Scholar 

  39. Li, X., Wen, C., Zou, Y.: Adaptive backstepping control for fractional-order nonlinear systems with external disturbance and uncertain parameters using smooth control. IEEE Trans. Syst. Man Cybern. 51(12), 7860–7869 (2020)

    Article  Google Scholar 

  40. Li, Y., Chen, Y., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Miao, C., Ke, Y.: Mittag-Leffler stability of fractional-order Lorenz and Lorenz-family systems. Nonlinear Dyn. 83(3), 1237–1246 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, Q., Zhang, J., Ding, D., Qi, D.: Adaptive Mittag-Leffler stabilization of a class of fractional order uncertain nonlinear systems. Asian J. Control 18(6), 2343–2351 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  44. Aguila-Camacho, N., Duarte-Mermoud, M., Gallegos, J.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2951–2957 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, New York (2011)

    Book  MATH  Google Scholar 

  46. Qiao, F., Zhu, Q., Zhang, B.: Fuzzy Sliding Mode Control and Observation of Complex Dynamic Systems and Applications. Bingjing Institute of Technology Press, Beijing (2013)

    Google Scholar 

  47. Boulkroune, A.: A fuzzy adaptive control approach for nonlinear systems with unknown control gain sign. Neurocomputing 179, 318–325 (2016)

    Article  Google Scholar 

  48. Roohi, M., Aghababa, M., Haghighi, A.: Switching adaptive controllers to control fractional-order complex systems with unknown structure and input nonlinearities. Complexity 21, 211–223 (2015)

    Article  MathSciNet  Google Scholar 

  49. Liu, Y., Gao, Y., Tong, S., Li, Y.: Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone. IEEE Trans. Fuzzy Syst. 24(1), 16–28 (2016)

    Article  Google Scholar 

  50. Wen, G., Wang, P., Cao, J., Huang, T., Yu, W., Sun, J.: Robust neuro-adaptive containment of multileader multiagent systems with uncertain dynamics. IEEE Trans. Syst. Man Cybern. 49(2), 406–417 (2017)

    Article  Google Scholar 

  51. Li, Y., Tong, S., Li, T.: Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control directions and unknown dead zones. IEEE Trans. Fuzzy Syst. 23(4), 1228–1241 (2015)

    Article  Google Scholar 

  52. Li, H., Wu, C., Yin, S., Lam, H.: Observer-based fuzzy control for nonlinear networked systems under unmeasurable premise variables. IEEE Trans. Fuzzy Syst. 24(5), 1233–1245 (2016)

    Article  Google Scholar 

  53. Pan, Y., Yu, H., Er, M.: Adaptive neural PD control with semiglobal asymptotic stabilization guarantee. IEEE Trans. Neural Netw. Learn. Syst. 25(12), 2264–2274 (2014)

    Article  Google Scholar 

  54. Pan, Y., Sun, T., Yu, H.: Peaking-free output-feedback adaptive neural control under a nonseparation principle. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3097–3108 (2015)

    Article  MathSciNet  Google Scholar 

  55. Wen, G., Wan, Y., Cao, J., Huang, T.: Master-slave synchronization of heterogeneous systems under scheduling communication. IEEE Trans. Syst. Man Cybern. 48(3), 473–484 (2018)

    Article  Google Scholar 

  56. Zhai, D., Lu, A., Dong, J., Zhang, Q.: Stability analysis and state feedback control of continuous-time T-S fuzzy systems via anew switched fuzzy Lyapunov function approach. Appl. Math. Comput. 293, 586–599 (2017)

    MathSciNet  MATH  Google Scholar 

  57. Li, Y., Tong, S., Liu, L., Feng, G.: Adaptive output-feedback control design with prescribed performance for switched nonlinear systems. Automatica 80, 225–231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Chowdhary, G., Mühlegg, M., Johnson, E.: Exponential parameter and tracking error convergence guarantees for adaptive controllers without persistency of excitation. Int. J. Control 87(8), 1583–1603 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Dong, W., Farrell, J., Polycarpou, M.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893–1899 (2000)

    Article  MathSciNet  Google Scholar 

  60. Farrell, J., Polycarpou, M., Sharma, M., Dong, W.: Command filtered backstepping. American Control Conference, pp. 1923–1928 (2008)

  61. Dong, W., Farrell, J., Polycarpou, M., Sharma, M.: Command filtered adaptive backstepping. IEEE Trans. Control Syst. Technol. 3(20), 566–580 (2012)

    Article  MATH  Google Scholar 

  62. Gorenflo, R., Kilbas, A., Mainardi, F., Rogosin, S.: Mittag-Leffler Functions, Related Topics and Applications. Springer, New York (2016)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IFPRC-035-611-2020) and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiulan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaadi, F.E., Zhang, X., Alassafi, M.O. et al. Fuzzy Command Filter Backstepping Control for Incommensurate Fractional-Order Systems via Composite Learning. Int. J. Fuzzy Syst. 24, 3293–3307 (2022). https://doi.org/10.1007/s40815-022-01344-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01344-6

Keywords

Navigation