Skip to main content
Log in

Fuzzy Logic System-Based Robust Adaptive Control of AUV with Target Tracking

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This article investigates the robust adaptive control for the longitudinal dynamics of autonomous underwater vehicle with target tracking based on fuzzy logic system. Through dynamic transformation, the target tracking command is converted to the pitch angle command. The tracking controller using switching mechanism is designed where the fuzzy logic system (FLS) cooperates with the robust design to deal with dynamics uncertainty. Considering the approximation ability of FLS, the modeling error is constructed and employed to design the fuzzy update law. The parameter adaptation law is further introduced for the unknown control gain function. The uniformly ultimate boundedness stability is proved through Lyapunov analysis. Simulation tests on the task of moving target tracking present higher tracking and learning performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li, J.H., Lee, P.M.: Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle. Ocean Eng. 32(17–18), 2165–2181 (2005)

    Article  Google Scholar 

  2. Qu, X., Liang, X., Hou, Y.: Fuzzy state observer-based cooperative path-following control of autonomous underwater vehicles with unknown dynamics and ocean disturbances. Int. J. Fuzzy Syst. 23(6), 1849–1859 (2021)

    Article  Google Scholar 

  3. Wang, N., He, H.: Extreme learning-based monocular visual servo of an unmanned surface vessel. IEEE Trans. Ind Inform. 17(8), 5152–5163. https://doi.org/10.1109/TII.2020.3033794

  4. Evans, J., Nahon, M.: Dynamics modeling and performance evaluation of an autonomous underwater vehicle. Ocean Eng. 31(14–15), 1835–1858 (2004)

    Article  Google Scholar 

  5. Paull, L., Saeedi, S., Seto, M., et al.: AUV navigation and localization: a review. IEEE J. Ocean. Eng. 39(1), 131–149 (2013)

    Article  Google Scholar 

  6. Xiang, X., Yu, C., Lapierre, L., et al.: Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles. Int. J. Fuzzy Syst. 20(2), 572–586 (2018)

    Article  MathSciNet  Google Scholar 

  7. Kong, S., Sun, J., Qiu, C., et al.: Extended state observer-based controller with model predictive governor for 3-D trajectory tracking of underactuated underwater vehicles. IEEE Trans. Ind. Inform. 17(9), 6114–6124 (2021)

    Article  Google Scholar 

  8. Wang, N., Zhang, Y., Ahn, C. K., Xu, Q.: Autonomous pilot of unmanned surface vehicles: bridging path planning and tracking. IEEE Trans. Veh. Technol. 71(3) 2358–2374. https://doi.org/10.1109/TVT.2021.3136670

  9. Sun, Y., Dong, D., Qin, H.: Backstepping-based distributed finite-time coordinated tracking control for multiple uncertain Euler-Lagrange systems. Int. J. Fuzzy Syst. 21(2), 503–517 (2019)

    Article  MathSciNet  Google Scholar 

  10. Guo, J., Chiu, F.C., Huang, C.C.: Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle. Ocean Eng. 30(16), 2137–2155 (2003)

    Article  Google Scholar 

  11. Qiao, L., Zhang, W.: Trajectory tracking control of AUVs via adaptive fast nonsingular integral terminal sliding mode control. IEEE Trans. Ind. Inform. 16(2), 1248–1258 (2019)

    Article  Google Scholar 

  12. Shen, C., Shi, Y., Buckham, B.: Path-following control of an AUV: a multiobjective model predictive control approach. IEEE Trans. Control Syst. Technol. 27(3), 1334–1342 (2019)

    Article  Google Scholar 

  13. Khodayari, M.H., Balochian, S.: Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller. J. Mar. Sci. Technol. 20(3), 559–578 (2015)

    Article  Google Scholar 

  14. Moreira, L., Soares, C.G.: \(H_ {2}\) and \(H_{\infty }\) designs for diving and course control of an autonomous underwater vehicle in presence of waves. IEEE J. Ocean. Eng. 33(2), 69–88 (2008)

    Article  Google Scholar 

  15. Chu, Z., Xiang, X., Zhu, D., et al.: Adaptive fuzzy sliding mode diving control for autonomous underwater vehicle with input constraint. Int. J. Fuzzy Syst. 20(5), 1460–1469 (2018)

    Article  MathSciNet  Google Scholar 

  16. Shen, C., Shi, Y., Buckham, B.: Integrated path planning and tracking control of an AUV: a unified receding horizon optimization approach. IEEE/ASME Trans. Mechatron. 22(3), 1163–1173 (2016)

    Article  Google Scholar 

  17. Hua, C.C., Guan, X.P.: Smooth dynamic output feedback control for multiple time-delay systems with nonlinear uncertainties. Automatica 68, 1–8 (2016). https://doi.org/10.1016/j.automatica.2016.01.007

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, P., Song, S., Huang, G.: Attention-based meta-reinforcement learning for tracking control of AUV with time-varying dynamics. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3079148

    Article  Google Scholar 

  19. Peng, Z., Wang, J.: Output-feedback path-following control of autonomous underwater vehicles based on an extended state observer and projection neural networks. IEEE Trans. Syst. Man Cybern. 48(4), 535–544 (2018)

    Article  Google Scholar 

  20. Peng, Z., Wang, J., Wang, D.: Distributed maneuvering of autonomous surface vehicles based on neurodynamic optimization and fuzzy approximation. IEEE Trans. Control Syst. Technol. 26(3), 1083–1090 (2017)

    Article  MathSciNet  Google Scholar 

  21. Wang, X., Xu, B., Li, S., et al.: Composite learning fuzzy control of stochastic nonlinear strict-feedback systems. IEEE Trans. Fuzzy Syst. 29(4), 705–715 (2021)

    Article  Google Scholar 

  22. Li, T.S., Wang, D., Feng, G., et al.: A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Trans. Syst. Man Cybern. 40(3), 915–927 (2009)

    Google Scholar 

  23. He, W., Meng, T., He, X., et al.: Unified iterative learning control for flexible structures with input constraints. Automatica 96, 326–336 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sedghi, F., Arefi, M.M., Abooee, A., et al.: Adaptive robust finite-time nonlinear control of a typical autonomous underwater vehicle with saturated inputs and uncertainties. IEEE/ASME Trans. Mechatron. 26(5), 2517–2527 (2021)

    Article  Google Scholar 

  25. Hua, C., Li, Y., Guan, X.: Finite/fixed-time stabilization for nonlinear interconnected systems with dead-zone input. IEEE Trans. Autom. Control 62(5), 2554–2560. https://doi.org/10.1109/TAC.2016.2600343

  26. Duan, K., Fong, S., Chen, C.L.P.: Reinforcement learning based model-free optimized trajectory tracking strategy design for an AUV. Neurocomputing 469, 289–297 (2022)

    Article  Google Scholar 

  27. Wang, N., Gao, Y., Zhang, X.: Data-driven performance-prescribed reinforcement learning control of an unmanned surface vehicle. IEEE Trans. Neural. Netw. Learn. Syst. 32(12), 5456–5467. https://doi.org/10.1109/TNNLS.2021.3056444

  28. Miao, B., Li, T., Luo, W.: A DSC and MLP based robust adaptive NN tracking control for underwater vehicle. Neurocomputing 111, 184–189 (2013)

    Article  Google Scholar 

  29. Guo, Y., Qin, H., Xu, B., et al.: Composite learning adaptive sliding mode control for AUV target tracking. Neurocomputing 351, 180–186 (2019)

    Article  Google Scholar 

  30. Shou, Y., Xu, B., Zhang, A., et al.: Virtual Guidance-based coordinated tracking control of multi-autonomous underwater vehicles using composite neural learning. IEEE Trans. Neural Netw. Learn. Syst. 32(12), 5547–5565 (2021)

    Article  MathSciNet  Google Scholar 

  31. Yang, C., Jiang, Y., He, W., et al.: Adaptive parameter estimation and control design for robot manipulators with finite-time convergence. IEEE Trans. Ind. Electron. 65(10), 8112–8123 (2018)

    Article  Google Scholar 

  32. Li, S., Ahn, C.K., Xiang, Z.: Sampled-data adaptive output feedback fuzzy stabilization for switched nonlinear systems with asynchronous switching. IEEE Trans. Fuzzy Syst. 27(1), 200–205 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (61933010), and in part by the Research Fund from Science and Technology on Underwater Vehicle Technology Laboratory (2021JCJQ-SYSJJ-LB06904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

According to [29], the coefficients in Eqs. (1)–(6) are given as follows

$$\begin{aligned} {a_{11}}= & {} - {A_x}/m,{a_{14}} = - P/m,{a_{18}} = T/m\nonumber \\ {a_{21}}= & {} [{\lambda _{26}}A_{{m_z}}^\alpha - ({J_{z1}} + {\lambda _{66}})A_y^\alpha ]/{D_{26}}\nonumber \\&- {a_{11}}[({J_{z1}} + {\lambda _{66}}){\lambda _{22}} - \lambda _{26}^2]/{D_{26}}\nonumber \\ {a_{22}}= & {} [({J_{z1}} + {\lambda _{66}})(m - A_y^\omega ) - {\lambda _{26}}A_{{m_{z1}}}^\omega ]/{D_{26}}\nonumber \\ {a_{23}}= & {} [\lambda _{26}^2 - ({J_{z1}} + {\lambda _{66}})(m + {\lambda _{22}})]/(m{D_{26}})\nonumber \\ {a_{24}}= & {} P[ - \lambda _{26}^2 + ({J_{z1}} + {\lambda _{66}}){\lambda _{22}}]/(m{D_{26}})\nonumber \\ {a_{25}}= & {} P({J_{z1}} + {\lambda _{66}})/{D_{26}},{a_{26}} = - {\lambda _{26}}B{x_c}/{D_{26}}\nonumber \\ {a_{27}}= & {} {\lambda _{26}}Bh/{D_{26}},{a_{28}} = - {\lambda _{26}}Th/{D_{26}}\nonumber \\ {a_{29}}= & {} A_y^\delta [ - ({J_{z1}} + {\lambda _{66}}) - {\lambda _{26}}{x_e}]/{D_{26}}\nonumber \\ {a_{31}}= & {} [A_{{m_z}}^\alpha (m + {\lambda _{22}}) - {\lambda _{26}}({A_x} + A_y^\alpha )]/{D_{26}}\nonumber \\ {a_{32}}= & {} [{\lambda _{26}}(m - A_y^\omega ) - A_{{m_{z1}}}^\omega (m + {\lambda _{22}})]/{D_{26}}\nonumber \\ {a_{34}}= & {} - {\lambda _{26}}P/{D_{26}},{a_{35}} = {\lambda _{26}}P/{D_{26}}\nonumber \\ {a_{36}}= & {} - (m + {\lambda _{22}})B{x_c}/{D_{26}}\nonumber \\ {a_{37}}= & {} (m + {\lambda _{22}})Bh/{D_{26}},{a_{38}} = - (m + {\lambda _{22}})Th/{D_{26}}\nonumber \\ {a_{39}}= & {} A_y^\delta [ - {\lambda _{26}} - {x_e}(m\mathrm{{ + }}{\lambda _{22}})]/{D_{26}}\nonumber \\ {D_{26}}= & {} ({J_{z1}} + {\lambda _{66}})(m+{\lambda _{22}}) - \lambda _{26}^2\nonumber \\ {A_x}= & {} (1/2)\rho S{C_{xS}},A_y^\alpha = (1/2)\rho SC_y^\alpha \nonumber \\ A_y^\delta= & {} (1/2)\rho SC_y^{{\delta _e}},A_y^\omega = (1/2)\rho SC_y^{\bar{\omega }}\nonumber \\ A_{{m_z}}^\alpha= & {} (1/2)\rho Sm_z^\alpha ,A_{{m_{z1}}}^\omega = (1/2)\rho SC_z^{{{\bar{\omega }}_y}}\nonumber \\ {\lambda _{22}}= & {} {K_{22}}\rho V,{\lambda _{26}} = {K_{26}}\rho {V^{4/3}},{\lambda _{66}} = {K_{66}}\rho {V^{5/3}} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xu, B. & Guo, Y. Fuzzy Logic System-Based Robust Adaptive Control of AUV with Target Tracking. Int. J. Fuzzy Syst. 25, 338–346 (2023). https://doi.org/10.1007/s40815-022-01356-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01356-2

Keywords

Navigation